题目名称是吸引我点进来的。
首先这是一个最小割模型,对点i,连S->i:b[i],i->T:w[i],i->i':p[i],i'->j(奇怪):inf,这样就有了一个TLE的算法。
怎么办呢?
然后vfk强行将n^2的边减少到nlogn:
考虑使用线段树,将一些a值在某个区间内的点用一些新点表示,在权值线段树中,i->ls[i]:inf,i->rs[i]:inf,对应的点->叶子节点:inf。但因为每个点只会被之前的点影响,所以需要主席树,并且每个叶子节点->前一棵树对应的点:inf。这样就好了,但是方向需要注意。
这样处理之后边数大大降低,那么问题来了:dinic复杂度是多少?——O(n^2*m)O(m*sqrt(m)O(玄学)
另外dinic还有一些优化如:if (!used) d[x]=0;
但还是好慢。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50005
#define M 500005
#define inf 1000000000
using namespace std;
int n,S,T,cnt,a[N],b[N],w[N],l[N],r[N],p[N],num[N],num_[N],Rt[N];
int first[M],to[M],flo[M],nxt[M],L=1;
int ls[M],rs[M],Num[M],sum;
int d[M],q[M],Ans,c[N*3],hz;
int read()
{
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x;
}
void link(int x,int y,int z)
{
to[++L]=y;flo[L]=z;nxt[L]=first[x];first[x]=L;
to[++L]=x;flo[L]=0;nxt[L]=first[y];first[y]=L;
}
void Get(int k,int l,int r,int x,int y,int w)
{
if (!k) return;
if (x<=l&&r<=y)
{
link(w,Num[k],inf);
return;
}
int mid=l+r>>1;
if (x<=mid) Get(ls[k],l,mid,x,y,w);
if (y>mid) Get(rs[k],mid+1,r,x,y,w);
}
void add(int &k,int p,int l,int r,int x,int w)
{
if (!k) Num[k=++sum]=++cnt;
if (l==r)
{
link(Num[k],w,inf);
if (p) link(Num[k],Num[p],inf);
return;
}
int mid=l+r>>1;
if (x<=mid) rs[k]=rs[p],add(ls[k],ls[p],l,mid,x,w);
else ls[k]=ls[p],add(rs[k],rs[p],mid+1,r,x,w);
}
bool BFS(int S,int T)
{
memset(d,-1,sizeof d);
int l=0,r=1,t;
q[1]=S;d[S]=1;
while(l<r)
{
t=q[++l];
for (int i=first[t];i;i=nxt[i])
if (flo[i]&&d[to[i]]==-1)
{
q[++r]=to[i];
d[to[i]]=d[t]+1;
}
}
return d[T]!=-1;
}
int flow(int x,int y,int T)
{
if (x==T) return y;
int used=0,tmp;
for (int i=first[x];i;i=nxt[i])
if (flo[i]&&d[to[i]]==d[x]+1)
{
tmp=flow(to[i],min(flo[i],y-used),T);
flo[i]-=tmp;flo[i^1]+=tmp;
used+=tmp;
if (used==y) return y;
}
return used;
}
int dinic(int S,int T)
{
int Ans=0;
while(BFS(S,T)) Ans+=flow(S,inf,T);
return Ans;
}
int main()
{
n=read();
S=++cnt;T=++cnt;
for (int i=1;i<=n;i++)
{
a[i]=read();b[i]=read();w[i]=read();
l[i]=read();r[i]=read();p[i]=read();
c[++hz]=a[i];
}
sort(c+1,c+hz+1);
for (int i=1;i<=n;i++)
{
a[i]=lower_bound(c+1,c+hz+1,a[i])-c;
l[i]=lower_bound(c+1,c+hz+1,l[i])-c;
r[i]=upper_bound(c+1,c+hz+1,r[i])-c-1;
num[i]=++cnt;num_[i]=++cnt;
Ans+=b[i]+w[i];
link(S,num[i],b[i]);
link(num[i],T,w[i]);
link(num[i],num_[i],p[i]);
if (l[i]<=r[i])
Get(Rt[i-1],1,hz,l[i],r[i],num_[i]);
add(Rt[i],Rt[i-1],1,hz,a[i],num[i]);
}
for (int i=1;i<=sum;i++)
{
if (ls[i]) link(Num[i],Num[ls[i]],inf);
if (rs[i]) link(Num[i],Num[rs[i]],inf);
}
printf("%d\n",Ans-dinic(S,T));
}
优化版
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 5005
#define M 500005
#define inf 1000000000
using namespace std;
int n,S,T,cnt,a[N],b[N],w[N],l[N],r[N],p[N],num[N],num_[N],Rt[N];
int first[M],to[M],flo[M],nxt[M],L=1;
int ls[M],rs[M],Num[M],sum;
int d[M],q[M],Ans,c[N],hz;
int read()
{
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x;
}
void link(int x,int y,int z)
{
to[++L]=y;flo[L]=z;nxt[L]=first[x];first[x]=L;
to[++L]=x;flo[L]=0;nxt[L]=first[y];first[y]=L;
}
void Get(int k,int l,int r,int x,int y,int w)
{
if (!k) return;
if (x<=l&&r<=y)
{
link(w,Num[k],inf);
return;
}
int mid=l+r>>1;
if (x<=mid) Get(ls[k],l,mid,x,y,w);
if (y>mid) Get(rs[k],mid+1,r,x,y,w);
}
void add(int &R,int p,int l,int r,int x,int w)
{
int k,mid;
Num[k=R=++sum]=++cnt;
while(l<r)
{
mid=l+r>>1;
if (x<=mid) rs[k]=rs[p],Num[k=ls[k]=++sum]=++cnt,p=ls[p],r=mid;
else ls[k]=ls[p],Num[k=rs[k]=++sum]=++cnt,p=rs[p],l=mid+1;
}
link(Num[k],w,inf);
if (p) link(Num[k],Num[p],inf);
}
bool BFS(int S,int T)
{
memset(d,-1,sizeof d);
int l=0,r=1,t;
q[1]=S;d[S]=1;
while(l<r)
{
t=q[++l];
for (int i=first[t];i;i=nxt[i])
if (flo[i]&&d[to[i]]==-1)
{
q[++r]=to[i];
d[to[i]]=d[t]+1;
}
}
return d[T]!=-1;
}
int flow(int x,int y,int T)
{
if (x==T) return y;
int used=0,tmp;
for (int i=first[x];i;i=nxt[i])
if (flo[i]&&d[to[i]]==d[x]+1)
{
tmp=flow(to[i],min(flo[i],y-used),T);
flo[i]-=tmp;flo[i^1]+=tmp;
used+=tmp;
if (used==y) return y;
}
if (!used) d[x]=-1;
return used;
}
int dinic(int S,int T)
{
int Ans=0;
while(BFS(S,T)) Ans+=flow(S,inf,T);
return Ans;
}
int main()
{
n=read();
S=++cnt;T=++cnt;
for (int i=1;i<=n;i++)
{
a[i]=read();b[i]=read();w[i]=read();
l[i]=read();r[i]=read();p[i]=read();
c[++hz]=a[i];
}
sort(c+1,c+hz+1);
for (int i=1;i<=n;i++)
{
a[i]=lower_bound(c+1,c+hz+1,a[i])-c;
l[i]=lower_bound(c+1,c+hz+1,l[i])-c;
r[i]=upper_bound(c+1,c+hz+1,r[i])-c-1;
num[i]=++cnt;num_[i]=++cnt;
Ans+=b[i]+w[i];
link(S,num[i],b[i]);
link(num[i],T,w[i]);
link(num[i],num_[i],p[i]);
if (l[i]<=r[i])
Get(Rt[i-1],1,hz,l[i],r[i],num_[i]);
add(Rt[i],Rt[i-1],1,hz,a[i],num[i]);
}
for (int i=1;i<=sum;i++)
{
if (ls[i]) link(Num[i],Num[ls[i]],inf);
if (rs[i]) link(Num[i],Num[rs[i]],inf);
}
printf("%d\n",Ans-dinic(S,T));
}