树链剖分_MODLE

P3384 【模板】树链剖分

题目描述

如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z

操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和

操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z

操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和

输入输出格式

输入格式:

第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。

接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)

接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:

操作1: 1 x y z

操作2: 2 x y

操作3: 3 x z

操作4: 4 x

输出格式:

输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模

输入输出样例

输入样例#1:
5 5 2 24
7 3 7 8 0 
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3
输出样例#1:
2
21

说明

时空限制:1s,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=100000,M<=100000

(其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233)

样例说明:

树的结构如下:

各个操作如下:

故输出应依次为2、21(重要的事情说三遍:记得取模)


#include<cstdio>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>

using namespace std;

#define MAXN (100000+5)

#define LL long long
#define pb push_back
#define Set(a, v) memset(a, v, sizeof(a))
#define For(i, a, b) for(int i = (a); i <= (int)(b); i++)
#define Forr(i, a, b) for(int i = (a); i >= (int)(b); i--)

vector<int> G[MAXN];
int n, R, dfsn;
LL val[MAXN], P;
int dep[MAXN], fa[MAXN], siz[MAXN], top[MAXN], son[MAXN], w[MAXN], mw[MAXN];
bool vis[MAXN];

int ql, qr;
struct Seg_tree{
	LL sum[MAXN*4], add[MAXN*4];
	
	void update(int o, int L, int R, LL x){
		int lc = o<<1, rc = o<<1|1;
		int mid = (L+R)>>1;

	//	printf("** lc = %d rc = %d L = %d R = %d mid = %d\n", lc, rc, L, R, mid);
		if(ql <= L && qr >= R){
			add[o] = (add[o]+x)%P;
		}else{
			if(ql <= mid) update(lc, L, mid, x);
			if(qr > mid) update(rc, mid+1, R, x);
		}

		sum[o] = 0;
		if(L != R) sum[o] = (sum[lc]+sum[rc])%P;
		sum[o] = (sum[o]+1LL*add[o]*(R-L+1)%P)%P;
		return;
	}

	LL query(int o, int L, int R, LL ADD){
		if(ql <= L && qr >= R)
			return (sum[o]+ADD*1LL*(R-L+1)%P)%P;
		
		int lc = o<<1, rc = o<<1|1;
		int mid = (L+R)>>1;

		LL ret = 0;
		if(ql <= mid) ret += query(lc, L, mid, (ADD+add[o])%P);
		if(qr > mid) ret = (ret+query(rc, mid+1, R, (ADD+add[o])%P))%P;
		return ret;
	}
}ST;

void dfs1(int now, int D){
	dep[now] = D; siz[now] = 1;

	int maxs = 0;
	For(i, 0, G[now].size()-1){
		int v = G[now][i];
		if(vis[v]) continue;

		vis[v] = true; fa[v] = now;
		dfs1(v, D+1);
		siz[now] += siz[v];
		
		if(siz[v] > maxs){
			maxs = siz[v]; son[now] = v;
		}
	}
}

int dfs2(int now, int tp){
	w[now] = mw[now] = ++dfsn; top[now] = tp;
	if(!son[now]) return mw[now];
	
	mw[now] = max(mw[now], dfs2(son[now], tp));
	For(i, 0, G[now].size()-1){
		int v = G[now][i];
		if(v == fa[now] || v == son[now]) continue;
		mw[now] = max(mw[now], dfs2(v, v));
	}

	return mw[now];
}

void makexy(int u, int v, int x, int op){
	LL ans = 0;

	while(u != v){
		int fu = top[u], fv = top[v];
		if(dep[fu] < dep[fv]) swap(fu, fv), swap(u, v);

		if(fu != fv){
			int nu = top[u];
			ql = min(w[top[u]], w[u]); qr = w[top[u]]+w[u]-ql;
			
			if(op == 1) ST.update(1, 1, n, x);
			else ans = (ans+ST.query(1, 1, n, 0))%P;
			
			u = fa[nu];
		}else{
			ql = min(w[u], w[v]); qr = w[u]+w[v]-ql;
			if(op == 1) ST.update(1, 1, n, x);
			else ans = (ans+ST.query(1, 1, n, 0))%P;
			break;
		}
		//printf("u = %d v = %d ans = %d\n", u, v, ans);
	}

	if(u == v && u){
		ql = qr = w[u];
		if(op == 2) ans += ST.query(1, 1, n, 0);
		else ST.update(1, 1, n, x);
	}
	if(op == 2) printf("%lld\n", (ans%P+P)%P);
}

void makex(int u, int x, int op){
	ql = w[u]; qr = mw[u];
	
	if(op == 3) ST.update(1, 1, n, x);
	else printf("%lld\n", (ST.query(1, 1, n, 0)+P)%P);
}

int main(){
    freopen("test.in", "r", stdin);
    freopen("test.out", "w", stdout);     
	    
    int m;
    scanf("%d%d%d%lld", &n, &m, &R, &P);
	For(i, 1, n) scanf("%lld", &val[i]);
	For(i, 1, n-1){
		int x, y;
		scanf("%d%d", &x, &y);
		G[x].pb(y); G[y].pb(x);
	}
	
	vis[R] = true;
	dfs1(R, 1); dfs2(R, R);

	For(i, 1, n){
		ql = qr = w[i];
		ST.update(1, 1, n, val[i]);
	}

	int op, x, y, z;

	For(i, 1, m){
	//	printf("i = %d______________________\n", i);
	    z = 0;
		scanf("%d", &op);
		
		if(op == 1) scanf("%d%d%d", &x, &y, &z);
		else if(op == 2) scanf("%d%d", &x, &y);
		else if(op == 3) scanf("%d%d", &x, &z);
		else scanf("%d", &x);

		if(op == 1 || op == 2) makexy(x, y, z, op);
		else makex(x, z, op);
	}

    return 0;
}




#include <cstdio> #include <iostream> #include <vector> #define N 30003 #define INF 2147483647 using namespace std; int n,f[N][20],dep[N],siz[N],son[N],top[N],tot,pos[N],w[N]; int Max[N*4],Sum[N*4]; vector <int> to[N]; void dfs1(int x){ siz[x]=1; int sz=to[x].size(); for(int i=0;i<sz;++i){ int y=to[x][i]; if(y==f[x][0])continue; f[y][0]=x; dep[y]=dep[x]+1; dfs1(y); siz[x]+=siz[y]; if(siz[y]>siz[son[x]])son[x]=y; } } void dfs2(int x,int root){ top[x]=root; pos[x]=++tot; if(son[x])dfs2(son[x],root); int sz=to[x].size(); for(int i=0;i<sz;++i){ int y=to[x][i]; if(y==f[x][0] || y==son[x])continue; dfs2(y,y); } } void update(int k,int l,int r,int P,int V){ if(l==r){ Max[k]=Sum[k]=V; return; } int mid=(l+r)>>1; if(P<=mid)update(k*2,l,mid,P,V); else update(k*2+1,mid+1,r,P,V); Max[k]=max(Max[k*2],Max[k*2+1]); Sum[k]=Sum[k*2]+Sum[k*2+1]; } void up(int &x,int goal){ for(int i=15;i>=0;--i) if(dep[f[x][i]]>=goal)x=f[x][i]; } int lca(int x,int y){ if(dep[x]>dep[y])up(x,dep[y]); if(dep[x]<dep[y])up(y,dep[x]); if(x==y)return x; for(int i=15;i>=0;--i) if(f[x][i]!=f[y][i])x=f[x][i],y=f[y][i]; return f[x][0]; } int getm(int k,int l,int r,int L,int R){ if(L<=l && r<=R)return Max[k]; int res=-INF,mid=(l+r)>>1; if(L<=mid)res=max(res,getm(k*2,l,mid,L,R)); if(R>mid)res=max(res,getm(k*2+1,mid+1,r,L,R)); return res; } int gets(int k,int l,int r,int L,int R){ if(L<=l && r<=R)return Sum[k]; int res=0,mid=(l+r)>>1; if(L<=mid)res+=gets(k*2,l,mid,L,R); if(R>mid)res+=gets(k*2+1,mid+1,r,L,R); return res; } int main(){ scanf("%d",&n); for(int i=1,a,b;i<n;++i){ scanf("%d%d",&a,&b); to[a].push_back(b); to[b].push_back(a); } dep[1]=1; dfs1(1); dfs2(1,1); for(int i=1;i<=15;++i) for(int j=1;j<=n;++j)f[j][i]=f[f[j][i-1]][i-1]; for(int i=1;i<=n;++i){ scanf("%d",&w[i]); update(1,1,n,pos[i],w[i]); } int q; scanf("%d",&q); while(q--){ char s[10]; int u,v,t; scanf("%s",s); if(s[1]=='H'){ scanf("%d%d",&u,&t); w[u]=t; update(1,1,n,pos[u],t); } if(s[1]=='M'){ scanf("%d%d",&u,&v); int ans=-INF,t=lca(u,v); for(int i=u;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans=max(ans,getm(1,1,n,pos[top[i]],pos[i])); else{ ans=max(ans,getm(1,1,n,pos[t],pos[i])); break; } for(int i=v;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans=max(ans,getm(1,1,n,pos[top[i]],pos[i])); else{ ans=max(ans,getm(1,1,n,pos[t],pos[i])); break; } printf("%d\n",ans); } if(s[1]=='S'){ scanf("%d%d",&u,&v); int ans=0,t=lca(u,v); for(int i=u;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans+=gets(1,1,n,pos[top[i]],pos[i]); else{ ans+=gets(1,1,n,pos[t],pos[i]); break; } for(int i=v;i;i=f[top[i]][0]) if(dep[t]<dep[top[i]]) ans+=gets(1,1,n,pos[top[i]],pos[i]); else{ ans+=gets(1,1,n,pos[t],pos[i]); break; } printf("%d\n",ans-w[t]); } } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值