P3384 【模板】树链剖分
题目描述
如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
输入输出格式
输入格式:第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。
接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。
接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)
接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:
操作1: 1 x y z
操作2: 2 x y
操作3: 3 x z
操作4: 4 x
输出格式:输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)
输入输出样例
输入样例#1:
5 5 2 24 7 3 7 8 0 1 2 1 5 3 1 4 1 3 4 2 3 2 2 4 5 1 5 1 3 2 1 3
输出样例#1:
2 21
说明
时空限制:1s,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=1000,M<=1000
对于100%的数据:N<=100000,M<=100000
(其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233)
样例说明:
树的结构如下:
各个操作如下:
故输出应依次为2、21(重要的事情说三遍:记得取模)
#include<cstdio>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;
#define MAXN (100000+5)
#define LL long long
#define pb push_back
#define Set(a, v) memset(a, v, sizeof(a))
#define For(i, a, b) for(int i = (a); i <= (int)(b); i++)
#define Forr(i, a, b) for(int i = (a); i >= (int)(b); i--)
vector<int> G[MAXN];
int n, R, dfsn;
LL val[MAXN], P;
int dep[MAXN], fa[MAXN], siz[MAXN], top[MAXN], son[MAXN], w[MAXN], mw[MAXN];
bool vis[MAXN];
int ql, qr;
struct Seg_tree{
LL sum[MAXN*4], add[MAXN*4];
void update(int o, int L, int R, LL x){
int lc = o<<1, rc = o<<1|1;
int mid = (L+R)>>1;
// printf("** lc = %d rc = %d L = %d R = %d mid = %d\n", lc, rc, L, R, mid);
if(ql <= L && qr >= R){
add[o] = (add[o]+x)%P;
}else{
if(ql <= mid) update(lc, L, mid, x);
if(qr > mid) update(rc, mid+1, R, x);
}
sum[o] = 0;
if(L != R) sum[o] = (sum[lc]+sum[rc])%P;
sum[o] = (sum[o]+1LL*add[o]*(R-L+1)%P)%P;
return;
}
LL query(int o, int L, int R, LL ADD){
if(ql <= L && qr >= R)
return (sum[o]+ADD*1LL*(R-L+1)%P)%P;
int lc = o<<1, rc = o<<1|1;
int mid = (L+R)>>1;
LL ret = 0;
if(ql <= mid) ret += query(lc, L, mid, (ADD+add[o])%P);
if(qr > mid) ret = (ret+query(rc, mid+1, R, (ADD+add[o])%P))%P;
return ret;
}
}ST;
void dfs1(int now, int D){
dep[now] = D; siz[now] = 1;
int maxs = 0;
For(i, 0, G[now].size()-1){
int v = G[now][i];
if(vis[v]) continue;
vis[v] = true; fa[v] = now;
dfs1(v, D+1);
siz[now] += siz[v];
if(siz[v] > maxs){
maxs = siz[v]; son[now] = v;
}
}
}
int dfs2(int now, int tp){
w[now] = mw[now] = ++dfsn; top[now] = tp;
if(!son[now]) return mw[now];
mw[now] = max(mw[now], dfs2(son[now], tp));
For(i, 0, G[now].size()-1){
int v = G[now][i];
if(v == fa[now] || v == son[now]) continue;
mw[now] = max(mw[now], dfs2(v, v));
}
return mw[now];
}
void makexy(int u, int v, int x, int op){
LL ans = 0;
while(u != v){
int fu = top[u], fv = top[v];
if(dep[fu] < dep[fv]) swap(fu, fv), swap(u, v);
if(fu != fv){
int nu = top[u];
ql = min(w[top[u]], w[u]); qr = w[top[u]]+w[u]-ql;
if(op == 1) ST.update(1, 1, n, x);
else ans = (ans+ST.query(1, 1, n, 0))%P;
u = fa[nu];
}else{
ql = min(w[u], w[v]); qr = w[u]+w[v]-ql;
if(op == 1) ST.update(1, 1, n, x);
else ans = (ans+ST.query(1, 1, n, 0))%P;
break;
}
//printf("u = %d v = %d ans = %d\n", u, v, ans);
}
if(u == v && u){
ql = qr = w[u];
if(op == 2) ans += ST.query(1, 1, n, 0);
else ST.update(1, 1, n, x);
}
if(op == 2) printf("%lld\n", (ans%P+P)%P);
}
void makex(int u, int x, int op){
ql = w[u]; qr = mw[u];
if(op == 3) ST.update(1, 1, n, x);
else printf("%lld\n", (ST.query(1, 1, n, 0)+P)%P);
}
int main(){
freopen("test.in", "r", stdin);
freopen("test.out", "w", stdout);
int m;
scanf("%d%d%d%lld", &n, &m, &R, &P);
For(i, 1, n) scanf("%lld", &val[i]);
For(i, 1, n-1){
int x, y;
scanf("%d%d", &x, &y);
G[x].pb(y); G[y].pb(x);
}
vis[R] = true;
dfs1(R, 1); dfs2(R, R);
For(i, 1, n){
ql = qr = w[i];
ST.update(1, 1, n, val[i]);
}
int op, x, y, z;
For(i, 1, m){
// printf("i = %d______________________\n", i);
z = 0;
scanf("%d", &op);
if(op == 1) scanf("%d%d%d", &x, &y, &z);
else if(op == 2) scanf("%d%d", &x, &y);
else if(op == 3) scanf("%d%d", &x, &z);
else scanf("%d", &x);
if(op == 1 || op == 2) makexy(x, y, z, op);
else makex(x, z, op);
}
return 0;
}