形式化验证1——modex工具学习

modex是一款基于Spin的模型检测工具,用于从C源代码中抽取并验证模型。用户需自定义.prx文件来指定模型抽取规则。支持并发、多线程程序,能检查空指针、数组越界、未初始化变量等错误,并支持LTL和timeline属性扩展验证。然而,学习成本高,验证效率受prx文件影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

modex,即model eXtractor,由bell实验室开发,基于spin的模型检测工具,modex通过自定义的test harness来从C源代码中抽取出需要验证的spin模型。然后调用spin进行处理,最后编译spin处理过的C代码,生成名为pan.exe或者pan的应用程序。

1.安装

下载地址:http://cm.bell-labs.com/cm/cs/what/modex/  http://spinroot.com/modex/

从该网站上下载源代码包,然后按照教程一步一步进行下去即可。主要需要flex和bison这两个工具。

由于modex需要调用spin的功能,因此,需要去http://spinroot.com/spin/Man/README.html下载spin。

modex和spin在ubuntu和windows下的cygwin环境下,皆可使用。但是,在cygwin情况下,需要调用dos2unix_modex_.run转换一下该文件的格式。

 

 

modex验证工具的调研报告

1.简介

modex,又名modexextractor。顾名思义,它能够根据用户需求从ANSI—C语言的代码中抽取出需要验证的目标模型。它是用标准C实现的,其检测目标是标准的C语言,不能处理其他语言。mo

### MODEX DOA Estimation Implementation and Methods MODE (Direction of Arrival) 方法在信号处理领域展示了显著的优势,例如渐近效率和适中的计算复杂度。然而,在低信噪比或小样本量情况下,由于对根多项式系数的对称性假设,可能导致性能严重下降[^1]。 为了克服这些局限性,PUMA(Principal Vectors Utilization for Modal Analysis)被引入作为改进方案。研究表明 PUMA 不仅提供了闭合形式的解法,而且不需要对系数施加额外的假设和约束条件,从而成为优于传统 MODE 实现的选择。 #### MATLAB Code Example for PUMA-Based DOA Estimation 下面是一个基于 PUMA 的 DOA 估计算法的简化版MATLAB代码实现: ```matlab function doa_estimates = puma_doa(x, M, d, lambda) % x is the received signal matrix with dimensions N x L, % where N is number of sensors and L is snapshot length. Rxx = cov(x'); % Compute covariance matrix [V,D] = eig(Rxx); % Eigenvalue decomposition % Select principal components based on eigenvalues thresholding idx = find(diag(D)>lambda); Vp = V(:,idx); % Construct steering vector grid over possible angles theta_grid = linspace(-90, 90, 181)'; A = exp(1i * 2*pi*d*(0:M-1)'*sin(theta_grid*pi/180)); % Calculate spatial spectrum using MUSIC-like formula adapted to PUMA P_puma = zeros(size(theta_grid)); for k=1:length(theta_grid), a_k = A(:,k); P_puma(k) = norm(a_k'*orth(Vp))^(-2); end [~,doa_idx] = max(P_puma); doa_estimates = theta_grid(doa_idx); end ``` 此代码片段实现了通过主成分分析提取主要特征向量,并应用类似于MUSIC的空间谱估计技术来进行DOA估算的过程。该方法继承了PUMA的优点,即无需对模型参数做出严格限制即可获得良好的角度分辨能力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值