【论文复现】QuestEval:《QuestEval: Summarization Asks for Fact-based Evaluation》

本文介绍了如何在服务器上使用QuestEval(NAACL2021论文)进行摘要事实一致性检测,包括创建conda虚拟环境、本地加载HuggingFace模型、以及针对服务器无法访问HuggingFace时的适配。重点在于QuestEvalMetric的本地化使用和BERTScore库的修改。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是复现论文《QuestEval: Summarization Asks for Fact-based Evaluation》(NAACL 2021)代码https://github.com/ThomasScialom/QuestEval/的流程记录:

  1. 在服务器上conda创建虚拟环境questeval(python版本于readme保持一致,為3.9)

    conda create -n questeval python=3.9
    
  2. git clone下载项目代码于本地,用pycharm打开并远程连接到服务器的该环境中。

  3. 服务器上进入该项目目录,安裝本项目需要的库。

    pip install -e .
    
  4. 这个项目作者开源的其实是功能,真正的主程序要自己创建,不过作者封装得很漂亮,只需要在项目根目录下新建一个python文件,如run.py,然后拷贝以下内容:(大体作者都在README.md中给出了,这里我是想用QuestEval模型去做摘要事实一致性检测

    from questeval.questeval_metric import QuestEval
    questeval = QuestEval(no_cuda=False, task="summarization", do_weighter=True)
    
    source_1 = "Since 2000, the recipient of the Kate Greenaway medal has also been presented with the Colin Mears award to the value of 35000."
    prediction_1 = "Since 2000, the winner of the Kate Greenaway medal has also been given to the Colin Mears award of the Kate Greenaway medal."
    references_1 = [
        "Since 2000, the recipient of the Kate Greenaway Medal will also receive the Colin Mears Awad which worth 5000 pounds",
        "Since 2000, the recipient of the Kate Greenaway Medal has also been given the Colin Mears Award."
    ]
    
    source_2 = "He is also a member of another Jungiery boyband 183 Club."
    prediction_2 = "He also has another Jungiery Boyband 183 club."
    references_2 = [
        "He's also a member of another Jungiery boyband, 183 Club.",
        "He belonged to the Jungiery boyband 183 Club."
    ]
    
    
    if __name__ == "__main__":
        score = questeval.corpus_questeval(
            hypothesis=[prediction_1, prediction_2],
            sources=[source_1, source_2],
            list_references=[references_1, references_2]
        )
    
        print(score)
    
  5. 如果服务器能够顺利连接huggingface,那么直接执行就跑通了,作者的代码没有任何bug。然而对于服务器访问不了huggingface的朋友们(比如我qwq),那么就需要把所有涉及远程加载模型的代码修改成本地加载的逻辑

    1. 先在huggingface把需要的模型给传进服务器里。我个人把下载好的模型文件会放在/dev_data_2/zkyao/pretrain_model/下。这里需要下载的模型有:t5-qa_squad2neg-en,t5-qg_squad1-en,t5-weighter_cnndm-en,bert-base-multilingual-cased

    2. 首先修改questeval/questeval_metric.py。作者把加载QuestEval框架所涉及到的模型的逻辑全部写在了_load_all_models()方法中。修改这几个部分:

      # models['hyp']['QA'] = f'{HF_ORGANIZATION}/t5-qa_squad2neg-en'
      models['hyp']['QA'] = "/dev_data_2/zkyao/pretrain_model/t5-qa_squad2neg-en"
      # models['hyp']['QG'] = f'{HF_ORGANIZATION}/t5-qg_squad1-en'
      models['hyp']['QG'] = "/dev_data_2/zkyao/pretrain_model/t5-qg_squad1-en"
      
      # models['Weighter'] = self.get_model(model_name=f'{HF_ORGANIZATION}/t5-weighter_cnndm-en')
      models['Weighter'] = self.get_model(model_name="/dev_data_2/zkyao/pretrain_model/t5-weighter_cnndm-en")
      
    3. 接下來就是特别隐蔽的库源码了,因为huggingface提供的metrics组件内部实现逻辑,是要加载模型的。然而正不巧的是,这里用到的metric——bert_score,源码的开发者显然不会考虑到服务器访问不了huggingface的我们。

      bert_score库的scorer.py代码的这部分,将模型类型和模型路径同时用self.model_type属性指代,导致把逻辑写死了必须远程加载模型。

      请添加图片描述

      为了能本地加载模型,不得不这样了。打开/{path_to_your_env}/lib/python3.9/site-packages/bert_score/scorer.py,作出如下修改:

      请添加图片描述

  6. 接下来整个测试程序就能顺利执行了!

1. 内容概要 本项目是一个支持科学函数的命令行计算器,兼容 C++98 标准。它实现了中缀表达式词法分析、后缀表达式转换与求值,支持常见数学运算(如幂、三角函数、对数等)与括号优先级解析。程序还提供了角度版三角函数、角度与弧度互转功能,并支持函数调试输出与函数演示模式。 2. 适用人群 * C++ 初中级学习者,特别是希望深入理解表达式求值机制者 * 需要一个可扩展的计算引擎的项目开发者 * 想通过项目实践词法分析、调度场算法、数学函数封装的开发者 * 高校学生课程设计、编译原理实践者 3. 使用场景及目标 * 实现中缀表达式的完整求解器,支持函数嵌套、优先级与结合性处理 * 提供角度与弧度版本的三角函数,以适应不同输入偏好 * 演示中缀转后缀过程,辅助编程教育与算法教学 * 提供科学函数辅助计算,如 `log`, `sqrt`, `abs`, `exp`, `ceil`, `floor` 等 4. 其他说明 * 支持函数:sin, cos, tan(弧度);sind, cosd, tand(角度) * 支持函数嵌套,如 `sin(deg2rad(30))` * 支持操作符:+, -, \*, /, ^, \*\*(幂运算)与括号优先级 * 所有函数均通过 map 注册,方便扩展与自定义 * 输入 `help` 查看支持函数,`demo` 观看转后缀过程,`quit` 退出程序 * 提示用户避免使用 `°` 符号,推荐使用角度函数代替 * 可通过 `g++ calculator.cpp -o calculator -lm` 编译(需链接数学库)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值