一、引言
1.1 研究背景与意义
随着人工智能技术的飞速发展,大模型在医疗领域的应用逐渐成为研究热点。大模型具有强大的数据分析和处理能力,能够对海量的医疗数据进行学习和挖掘,发现数据之间的潜在关联和规律,为医疗决策提供有力支持。手术作为治疗疾病的重要手段,在术前、术中、术后各个阶段都面临着各种风险,其中并发症的发生严重影响患者的康复和预后。传统的并发症预测和管理方法主要依赖医生的临床经验和简单的生理指标,存在主观性强、准确性低、缺乏动态监测等局限性。研发基于大模型的并发症系统,能够整合患者的多源数据,实现对并发症风险的精准预测,并根据预测结果制定个性化的手术方案、麻醉方案、术后护理计划以及健康教育与指导方案,对于提高手术安全性、降低并发症发生率、改善患者的治疗效果和康复质量具有重要意义。
1.2 研究目的
本研究旨在使用大模型研发一套全面的并发症系统,实现对手术患者术前、术中、术后各个阶段并发症风险的准确预测,并基于预测结果制定科学合理的手术方案、麻醉方案、术后护理计划以及健康教育与指导方案,从而有效降低并发症的发生率,提高手术成功率和患者的康复效果。
1.3 研究方法与创新点
本研究综合运用多种研究方法。首先,通过多渠道广泛收集手术患者的相关数据,包括电子病历、实验室检查结果、影像学资料、手术记录、麻醉记录、术后护理记录等,并对数据进行清洗、去噪、标准化等预处理操作,确保数据的质量和一致性。其次,根据并发症风险预测的需求和特点,选择合适的大模型架构,如 Transformer 架构及其变体等,利用预处理后的数据对大模型进行训练,通过不断调整模型参数和优化训练算法,使模型能够准确地学习到患者数据与并发症风险之间的关系。在训练过程中,采用交叉验证、正则化等技术,防止模型过拟合,提高模型的泛化能力和稳定性。然后,基于训练好的大模型,开发并发症系统,该系统具备数据输入、模型计算、结果输出等功能模块,并将其与医院现有的信息系统进行集成,实现数据的自动传输和共享,提高临床应用的效率和便捷性。最后,使用独立的测试数据集对系统进行验证,通过比较评估结果与实际发生的并发症情况,评估系统的准确性和可靠性,并根据验证结果对系统进行优化和改进。
本研究的创新点主要体现在以下两个方面。一是在大模型应用方面,首次将大模型技术全面应用于手术并发症风险预测和各阶段管理的全流程,实现了从术前风险评估到术中实时监测再到术后康复指导的一体化覆盖,相较于传统方法,能够更全面、深入地挖掘数据价值,提高预测的准确性和全面性。二是在系统设计方面,构建的并发症系统具有高度的集成性和智能化特点,不仅能够整合患者的各种医疗数据,还能根据风险预测结果自动生成个性化的手术方案、麻醉方案、术后护理计划以及健康教育与指导方案,为临床医生提供一站式的决策支持服务 ,极大地提高了医疗服务的效率和质量。
二、大模型技术概述
2.1 大模型基本原理与架构
大模型通常基于深度学习框架构建,其核心架构采用 Transformer 及其变体。Transformer 架构由 Vaswani 等人在 2017 年提出,旨在解决传统循环神经网络(RNN)和卷积神经网络(CNN)在处理长序列数据时的局限性 。Transformer 架构完全基于注意力机制,摒弃了 RNN 的顺序处理方式和 CNN 的局部卷积操作,能够直接捕捉序列中任意位置之间的依赖关系,大大提高了模型对长距离依赖的建模能力。
Transformer 架构主要由编码器(Encoder)和解码器(Decoder)两部分组成。编码器负责将输入序列转换为隐藏状态表示,解码器则基于编码器的输出和已生成的序列生成下一个输出。在编码器和解码器中,都包含多个相同的层,每个层又由多头注意力机制(Multi-Head Attention)和前馈神经网络(Feed-Forward Network,FFN)组成。
自注意力机制(Self-Attention)是 Transformer 架构的核心组件,它允许模型在处理序列中的每个元素时,能够同时关注到序列中的其他所有元素,从而捕捉到元素之间的全局依赖关系。自注意力机制的计算过程可以分为以下几步:首先,将输入序列通过线性变换分别得到查询向量(Query,Q)、键向量(Key,K)和值向量(Value,V);然后,计算查询向量与键向量之间的点积,并通过缩放因子进行归一化,得到注意力分数;接着,使用 softmax 函数对注意力分数进行归一化,得到注意力权重;最后,将注意力权重与值向量进行加权求和,得到自注意力机制的输出。自注意力机制的计算公式如下:
Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V
其中, d_k 是键向量的维度。
多头注意力机制则是在自注意力机制的基础上,通过多个不同的线性变换,将输入序列映射到多个不同的子空间中,每个子空间都独立地进行自注意力计算,最后将多个子空间的输出拼接起来,并通过一个线性变换得到最终的输出。多头注意力机制能够捕捉到输入序列中不同层次和不同角度的信息,进一步增强了模型的表达能力。多头注意力机制的计算公式如下:
MultiHead(Q, K, V) = Concat(head_1, head_2,..., head_h)W^O
其中, head_i = Attention(QW_i^Q, KW_i^K, VW_i^V) , W_i^Q 、 W_i^K 和 W_i^V 是第 i 个头的线性变换矩阵, W^O 是最后的线性变换矩阵, h 是头的数量。
前馈神经网络则是对多头注意力机制的输出进行进一步的特征变换和非线性映射,它由两个全连接层和一个 ReLU 激活函数组成。前馈神经网络的作用是对序列中的每个位置进行独立的特征变换,从而增强模型对局部特征的建模能力。
2.2 大模型在医疗领域的应用现状
近年来,大模型在医疗领域的应用取得了显著进展,涵盖了疾病诊断、药物研发、个体化治疗、医疗影像分析、医疗文本处理等多个方面。
在疾病诊断方面,大模型可以通过分析患者的临床症状、实验室检查结果、影像学资料等多源数据,辅助医生进行疾病的诊断和鉴别诊断。例如,基于深度学习的大模型可以对医学影像(如 X 光、CT、MRI 等)进行自动分析,检测出病变的位置、大小和性质,帮助医生更准确地诊断疾病。一些研究表明,大模型在肺癌、乳腺癌、糖尿病视网膜病变等疾病的诊断中,已经达到了与专业医生相当的水平。
在药物研发领域,大模型可以加速药物研发的进程,降低研发成本。通过对大量的生物数据(如蛋白质结构、药物分子结构、疾病靶点等)进行学习和分析,大模型可以预测药物的活性、毒性和副作用,筛选出潜在的药物分子,为药物研发提供指导。此外,大模型还可以用于药物设计和优化,通过生成新的药物分子结构,提高药物的疗效和安全性。
在个体化治疗方面,大模型可以根据患者的基因信息、病史、生活习惯等个性化数据,为患者制定个性化的治疗方案。例如,通过分析患者的基因数据,大模型可以预测患者对不同药物的反应,帮助医生选择最适合患者的药物和剂量,提高治疗效果。同时,大模型还可以对患者的治疗过程进行实时监测和评估,及时调整治疗方案,确保患者的治疗安全和有效。
以国际首个糖尿病诊疗多模态大模型为例,该系统充分利用了大语言模型和深度学习技术的优势,通过对 37.2 万条基层慢病诊疗和管理数据、超 50 万张眼底图像的训练优化,实现了基于临床信息的糖尿病管理意见推荐、基于眼底图像精准预测糖尿病视网膜病变进展,并生成临床诊疗意见。经测试,该模型产出的糖尿病诊疗意见质量达到或强于基层医生水平,糖尿病视网膜病变诊断能力达到专业眼科医生水平,为基层糖尿病防治提供了有效的数字解决方案 。
三、术前阶段
3.1 数据收集与预处理
3.1.1 数据来源
本研究的围术期相关数据来源广泛,主要包括以下几个方面:
电子病历系统:患者的基本信息,如姓名、年龄、性别、联系方式等,这些信息有助于对患者进行基本的人口统计学分析;既往病史,包括各类慢性疾病(如高血压、糖尿病、心脏病等)的患病情况、治疗记录以及过敏史等,为评估患者的整体健康状况和潜在风险提供重要依据;家族病史,了解家族中是否存在某些遗传性疾病,有助于判断患者患相关疾病的遗传倾向。
检查结果:实验室检查数据,如血常规、尿常规、凝血功能、肝肾功能、电解质等指标,能够反映患者的生理状态和潜在的健康问题。例如,血常规中的白细胞计数可以提示患者是否存在感染,凝血功能指标对于评估手术中出血风险至关重要;影像学检查资料,如 X 光、CT、MRI、超声等影像,能够直观地展示患者的病变部位、形态、大小以及与周围组织的关系,为手术方案的制定提供关键的影像学依据。
影像资料:手术相关的影像资料,如手术部位的三维重建模型、血管造影图像等,这些资料可以帮助医生更清晰地了解手术部位的解剖结构,提前规划手术路径,减少手术风险。
其他数据来源:患者的生活习惯信息,如吸烟、饮酒情况、饮食习惯、运动频率等,这些因素可能对患者的健康状况和手术预后产生影响;患者的心理状态评估数据,如焦虑、抑郁等情绪指标,心理状态不佳可能会影响患者的手术耐受性和术后康复。
3.1.2 数据清洗与标准化
数据清洗:由于原始数据可能存在噪声、错误、重复和缺失值等问题,这些问题会影响模型的准确性和可靠性,因此需要进行数据清洗。
去噪处理:通过数据平滑、滤波等方法,去除数据中的异常值和噪声点,使数据更加平滑和稳定。例如,对于生命体征数据中的瞬间异常波动,可以采用移动平均法进行平滑处理,以更准确地反映患者的真实生理状态。
重复值处理:识别并删除数据集中的重复记录,避免重复数据对分析结果的干扰。在电子病历数据中,可能存在由于录入错误或系统问题导致的重复记录,通过比较记录的关键信息(如患者 ID、检查时间等),可以找出并删除这些重复数据。
缺失值处理:对于缺失值,根据数据的特点和实际情况,采用合适的方法进行填补。对于数值型数据,可以使用均值、中位