logistic regression notes

Simplified Cost Function and Gradient Descent

Note: [6:53 - the gradient descent equation should have a 1/m factor]

We can compress our cost function's two conditional cases into one case:

\mathrm{Cost}(h_\theta(x),y) = - y \; \log(h_\theta(x)) - (1 - y) \log(1 - h_\theta(x))Cost(hθ​(x),y)=−ylog(hθ​(x))−(1−y)log(1−hθ​(x))

Notice that when y is equal to 1, then the second term (1-y)\log(1-h_\theta(x))(1−y)log(1−hθ​(x)) will be zero and will not affect the result. If y is equal to 0, then the first term -y \log(h_\theta(x))−ylog(hθ​(x)) will be zero and will not affect the result.

We can fully write out our entire cost function as follows:

J(\theta) = - \frac{1}{m} \displaystyle \sum_{i=1}^m [y^{(i)}\log (h_\theta (x^{(i)})) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))]J(θ)=−m1​i=1∑m​[y(i)log(hθ​(x(i)))+(1−y(i))log(1−hθ​(x(i)))]

A vectorized implementation is:

h=g(Xθ)J(θ)=1m⋅(−yTlog(h)−(1−y)Tlog(1−h))

Gradient Descent

Remember that the general form of gradient descent is:

Repeat{θj:=θj−α∂∂θjJ(θ)}

We can work out the derivative part using calculus to get:

Repeat{θj:=θj−αm∑i=1m(hθ(x(i))−y(i))x(i)j}

Notice that this algorithm is identical to the one we used in linear regression. We still have to simultaneously update all values in theta.

A vectorized implementation is:

\theta := \theta - \frac{\alpha}{m} X^{T} (g(X \theta ) - \vec{y})θ:=θ−mα​XT(g(Xθ)−y​)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值