吴恩达新书Machine learning yearning笔记

如果开发集上运行性能良好,却在测试集上效果不佳。如果此时开发集和测试集的分布相同,那么你就能清楚地明白问题所在:算法在开发集上 过拟合了(overfit)。解决方案显然就是去获取更多的开发集数据。

但是如果开发集和测试集服从不同的分布,解决方案就不那么明确了。此时可能存在以下一种 或者多种情况:

1. 算法在开发集上过拟合了。

2. 测试集比开发集更难进行预测,尽管算法做得足够好了,却很难有进一步的提升空间。

3. 测试集不一定更难预测,但它与开发集性质并不相同(分布不同)。因此在开发集上表现 良好的算法不一定在测试集上也能够取得出色表现。如果是这种情况,大量针对开发集性 能的改进工作将会是徒劳的。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值