SeetaFace6包含人脸识别的基本能力:人脸检测、关键点定位、人脸识别,同时增加了活体检测、质量评估、年龄性别估计,并且顺应实际应用需求,开放口罩检测以及口罩佩戴场景下的人脸识别模型。
1. 概述
人脸特征提取与对比,就是将待识别的人脸经过处理变成二进制数据的特征,然后基于特征表示的人脸进行相似度计算,最终与相似度阈值对比,一般超过阈值就认为特征表示的人脸是同一个人。
为了应对不同级别的应用需求,SeetaFace6将开放三个版本模型:
文件名 |
特征长度 |
建议阈值 |
说明 |
---|---|---|---|
face_recognizer.csta |
1024 |
0.62 |
通用场景高精度人脸识别 |
face_recognizer_mask.csta |
512 |
0.48 |
带口罩人脸识别模型 |
face_recognizer_light.csta |
512 |
0.55 |
轻量级人脸识别模型 |
需要注意的是,不同模型提取的特征是不具备可比较性的,哪怕特征一样。如果在正在运行的系统替换了识别模型的话,所有底库照片全部需要重新提取特征再进行比较才行。
2. 人脸特征提取
首先构造人脸识别器:
#