图像处理之图像锐化算法

目录

1 图像锐化算法简介

2 图像拉普拉斯锐化

3 图像USM锐化

4 演示Demo

4.1 开发环境

4.2 功能介绍

4.3 下载地址

参考


1 图像锐化算法简介

        图像锐化处理的目的是使模糊的图像变得更加清晰起来,通常针对引起图像模糊的原因而进行相应地锐化操作属于图像复原的内容。图像的模糊实质就是图像受到平均或积分运算造成的,因此可以对图像进行还原运算如微分运算来使图像清晰化。从频谱角度来分析,图像模糊的实质是其高频分量被衰减,因而可以通过高通滤波操作来清晰图像。但要注意,能够进行锐化处理的图像必须有较高的信噪比,否则锐化后图像信噪比反而更低,从而使噪声的增加得比信号还要多,因此一般是先取出或减轻噪声后再进行锐化处理。

        本文介绍两个基础的图像锐化算法--拉普拉斯锐化和USM锐化。

2 图像拉普拉斯锐化

        图像拉普拉斯锐化是根据图像某个像素的周围像素到此像素的突变程度有关,也就是说它的依据是图像像素的变化程度。我们知道,一个函数的一阶微分描述了函数图像是朝哪里变化的,即增长或者降低;而二阶微分描述的则是图像变化的速度,急剧增长下降还是平缓的增长下降。那么据此我们可以猜测出依据二阶微分能够找到图像的色素的过渡程度,例如白色到黑色的过渡就是比较急剧的。

  或者用官方点的话说:当邻域中心像素灰度低于它所在的领域内其它像素的平均灰度时,此中心像素的灰度应被进一步降低,当邻域中心像素灰度高于它所在的邻域内其它像素的平均灰度时,此中心像素的灰度应被进一步提高,以此实现图像的锐化处理。

        拉普拉斯锐化实际上是一个拉普拉斯算子模板的图像卷积计算,同高斯模板类似,只不过这里的权重模板是拉普拉斯算子,这样讲可能更容易理解。

        常见的拉普拉斯算子模板有4邻域模板和8邻域模板,如下所示

MASK4=\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}

MASK8=\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}

        假设有像素P(x,y),拉普拉斯锐化结果为G(x,y)。

        对于4邻域模板,拉普拉斯算子的公式如下:

\nabla^2f = 4P(x,y) - P(x-1,y) - P(x,y+1) - P(x+1,y) - P(x,y-1)

        对于8邻域模板,拉普拉斯算子的公式如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值