目录
1 简介
Mean Shift(均值漂移) 是一种基于密度估计的非参数化滤波算法,主要用于图像平滑和分割。Mean Shift 的核心思想是通过迭代计算局部区域的均值,将像素值向密度最大的方向漂移,从而实现图像的平滑和聚类。
Mean Shift 滤波算法广泛应用于图像去噪、图像分割、目标跟踪等领域。
2 算法原理
Mean Shift 滤波的基本思想是:对于图像中的每个像素,定义一个局部窗口,计算窗口内像素的均值,并将当前像素值更新为该均值。通过多次迭代,像素值会逐渐向局部密度最大的方向漂移,从而实现图像的平滑。
算法步骤:
(1)对于图像中的每个像素 x,定义一个局部窗口(通常为圆形或矩形)。
(2)计算窗口内像素的均值:
其中,K 是核函数(通常为高斯核)。
其中,h 是带宽参数,控制窗口的大小。
(3)将当前像素值更新为均值 m(x)m(x)。
(4)重复上述步骤,直到像素值收敛或达到最大迭代次数。
3 代码实现
MeanShift滤波算法的C语言代码实现如下
int MeanShiftOneChannel(unsigned char* srcData, int width, int height, int radius, int threshold, int maxIter)
{
int len = sizeof(unsigned long) * width * height;
int i, j;
int gray = 0, sum = 0, srcGray = 0, count = 0;
unsigned char* tempData = (unsigned char*)malloc(sizeof(unsigned char) * height * width);
memcpy(tempData, srcData, sizeof(unsigned char) * height * width);
for (j = 0; j < height; j++)
{
for (i = 0; i < width; i++)
{
len = i + j * width;
int nIter = 0, cx = 0, cy = 0, sumx = 0, sumy = 0;
srcGray = tempData[len];
cx = i;
cy = j;
while (nIter < maxIter)
{
sum = 0;
sumx = 0;
sumy = 0;
count = 0;
for (int y = cy - radius; y <= cy + radius; y++)
{
for (int x = cx - radius; x <= cx + radius; x++)
{
int px = CLIP3(x, 0, width - 1);
int py = CLIP3(y, 0, height - 1);
len = px + py * width;
gray = tempData[len];
if (abs(gray - srcGray) < threshold)
{
count++;
sum += gray;
sumx += x;
sumy += y;
}
}
}
if (count == 0)
break;
srcGray = sum / count;
cx = sumx / count;
cy = sumy / count;
nIter++;
}
srcData[i + j * width] = srcGray;
}
}
free(tempData);
return 0;
};
int mxMeanShiftFilter(unsigned char* srcData, int nWidth, int nHeight, int nStride, int radius, int threshold, int maxIter)
{
if (srcData == NULL)
{
return 0;
}
if (radius == 0 || threshold == 0)
return 0;
unsigned char* yData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
unsigned char* cbData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
unsigned char* crData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
unsigned char* pSrc = srcData;
int Y, CB, CR;
unsigned char* pY = yData;
unsigned char* pCb = cbData;
unsigned char* pCr = crData;
for (int j = 0; j < nHeight; j++)
{
for (int i = 0; i < nWidth; i++)
{
RGBToYCbCr(pSrc[2], pSrc[1], pSrc[0], &Y, &CB, &CR);
*pY = Y;
*pCb = CB;
*pCr = CR;
pY++;
pCb++;
pCr++;
pSrc += 4;
}
}
MeanShiftOneChannel(yData, nWidth, nHeight, radius, threshold, maxIter);
pSrc = srcData;
pY = yData;
pCb = cbData;
pCr = crData;
int R, G, B;
for (int j = 0; j < nHeight; j++)
{
for (int i = 0; i < nWidth; i++)
{
YCbCrToRGB(*pY, *pCb, *pCr, &R, &G, &B);
pSrc[0] = B;
pSrc[1] = G;
pSrc[2] = R;
pY++;
pCb++;
pCr++;
pSrc += 4;
}
}
free(yData);
free(cbData);
free(crData);
}
4 演示Demo
4.1 开发环境
-
Windows 10 Pro x64
-
Visual Studio 2015
4.2 功能介绍
演示程序主界面如下图所示,具有图像读取、显示、保存、双边滤波、表面模糊、导向滤波、局部均值方差滤波、各向异性扩散滤波、Smart Blur滤波、MeanShift滤波、处理耗时等功能
原图
滤波效果图
4.3 下载地址
开发环境:
-
Windows 10 pro x64
-
Visual Studio 2015
参考
图像视频滤镜与人像美颜美妆算法详解. 胡耀武、谭娟、李云夕. 电子工业出版社、2020-07