图像保边滤波之MeanShift滤波算法

目录

1 简介

2 算法原理

3 代码实现

4 演示Demo

4.1 开发环境

4.2 功能介绍

4.3 下载地址

参考


1 简介

        Mean Shift(均值漂移) 是一种基于密度估计的非参数化滤波算法,主要用于图像平滑和分割。Mean Shift 的核心思想是通过迭代计算局部区域的均值,将像素值向密度最大的方向漂移,从而实现图像的平滑和聚类。

        Mean Shift 滤波算法广泛应用于图像去噪、图像分割、目标跟踪等领域。

2 算法原理

        Mean Shift 滤波的基本思想是:对于图像中的每个像素,定义一个局部窗口,计算窗口内像素的均值,并将当前像素值更新为该均值。通过多次迭代,像素值会逐渐向局部密度最大的方向漂移,从而实现图像的平滑。

        算法步骤:

(1)对于图像中的每个像素 x,定义一个局部窗口(通常为圆形或矩形)。

(2)计算窗口内像素的均值:

        其中,K 是核函数(通常为高斯核)。

        其中,h 是带宽参数,控制窗口的大小。

(3)将当前像素值更新为均值 m(x)m(x)。

(4)重复上述步骤,直到像素值收敛或达到最大迭代次数。

3 代码实现

        MeanShift滤波算法的C语言代码实现如下

int MeanShiftOneChannel(unsigned char* srcData, int width, int height, int radius, int threshold, int maxIter)
{
        int len = sizeof(unsigned long) * width * height;
        int i, j;
        int gray = 0, sum = 0, srcGray = 0, count = 0;
        unsigned char* tempData = (unsigned char*)malloc(sizeof(unsigned char) * height * width);
        memcpy(tempData, srcData, sizeof(unsigned char) * height * width);
        for (j = 0; j < height; j++)
        {
                for (i = 0; i < width; i++)
                {
                        len = i + j * width;
                        int nIter = 0, cx = 0, cy = 0, sumx = 0, sumy = 0;
                        srcGray = tempData[len];
                        cx = i;
                        cy = j;

                        while (nIter < maxIter)
                        {
                                sum = 0;
                                sumx = 0;
                                sumy = 0;
                                count = 0;
                                for (int y = cy - radius; y <= cy + radius; y++)
                                {
                                        for (int x = cx - radius; x <= cx + radius; x++)
                                        {
                                                int px = CLIP3(x, 0, width - 1);
                                                int py = CLIP3(y, 0, height - 1);
                                                len = px + py * width;
                                                gray = tempData[len];
                                                if (abs(gray - srcGray) < threshold)
                                                {
                                                        count++;
                                                        sum += gray;
                                                        sumx += x;
                                                        sumy += y;
                                                }
                                        }
                                }
                                if (count == 0)
                                        break;
                                srcGray = sum / count;
                                cx = sumx / count;
                                cy = sumy / count;
                                nIter++;
                        }
                        srcData[i + j * width] = srcGray;
                }
        }
        free(tempData);
        return 0;
};

int mxMeanShiftFilter(unsigned char* srcData, int nWidth, int nHeight, int nStride, int radius, int threshold, int maxIter)
{
        if (srcData == NULL)
        {
                return 0;
        }
        if (radius == 0 || threshold == 0)
                return 0;
        unsigned char* yData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
        unsigned char* cbData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
        unsigned char* crData = (unsigned char*)malloc(sizeof(unsigned char) * nWidth * nHeight);
        unsigned char* pSrc = srcData;
        int Y, CB, CR;
        unsigned char* pY = yData;
        unsigned char* pCb = cbData;
        unsigned char* pCr = crData;
        for (int j = 0; j < nHeight; j++)
        {
                for (int i = 0; i < nWidth; i++)
                {
                        RGBToYCbCr(pSrc[2], pSrc[1], pSrc[0], &Y, &CB, &CR);
                        *pY = Y;
                        *pCb = CB;
                        *pCr = CR;
                        pY++;
                        pCb++;
                        pCr++;
                        pSrc += 4;
                }
        }
        MeanShiftOneChannel(yData, nWidth, nHeight, radius, threshold, maxIter);
        pSrc = srcData;
        pY = yData;
        pCb = cbData;
        pCr = crData;
        int R, G, B;
        for (int j = 0; j < nHeight; j++)
        {
                for (int i = 0; i < nWidth; i++)
                {
                        YCbCrToRGB(*pY, *pCb, *pCr, &R, &G, &B);
                        pSrc[0] = B;
                        pSrc[1] = G;
                        pSrc[2] = R;
                        pY++;
                        pCb++;
                        pCr++;
                        pSrc += 4;
                }
        }
        free(yData);
        free(cbData);
        free(crData);
}

4 演示Demo

4.1 开发环境

  • Windows 10 Pro x64

  • Visual Studio 2015

4.2 功能介绍

        演示程序主界面如下图所示,具有图像读取、显示、保存、双边滤波、表面模糊、导向滤波、局部均值方差滤波、各向异性扩散滤波、Smart Blur滤波、MeanShift滤波、处理耗时等功能

原图

滤波效果图

4.3 下载地址

        开发环境:

  • Windows 10 pro x64

  • Visual Studio 2015

        下载地址:图像保边滤波之MeanShift滤波算法Demo

参考

        图像视频滤镜与人像美颜美妆算法详解. 胡耀武、谭娟、李云夕. 电子工业出版社、2020-07

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值