c++粒子群优化算法解决多维01背包问题

20 篇文章 2 订阅
#include<random>
#include <iostream>
#include<vector>
#include<fstream>
#include <time.h>

	
using namespace std;
//rewrite the <
bool operator<(vector<int>&a ,vector<int>&b) {
	bool res = true;
	if (a.size() != b.size())return false;
	for (int i = 0; i < a.size(); i++)
		if (a[i] > b[i]) {
			res = false;
			break;
		}
	return res;
			

}
//rewrite the operator *
vector<int> operator*(vector<int>&a, int b) {
	for (int i = 0; i < a.size(); i++) {
		a[i] *= b;
	}
	return a;
}
class partical { //the partical in pso algorithm
public:
	int dimention; //dimention of position
	int value;
	vector<int> weight;
	
	vector<double> localP;  //local best position
	vector<double> velocity; //current velocity
	//int maxsize;  //the maximum of size
	vector<double> position;  //the position of this particle
	//the default constructor by random
	partical(vector<vector<int>> Wei, vector<int> v,
		vector<int> constrain, int maxs, int dim);
	//update the position and w
	int update(vector<int> v,vector<vector<int>> w, vector<int> cons); //return value ,para:weight

};
int partical::update(vector<int> v,vector<vector<int>> w,vector<int> cons) {  //return the value
	int newValue = 0;
	vector<int> newWei(dimention,0);
	for (int i = 0; i < position.size(); i++) {
		if (position[i] < 0.5)position[i] = 0;
		else position[i] = 1;
		
		if (position[i] == 1) {
			
			for (int j = 0; j < dimention; j++) {
				newWei[j] += w[i][j]; //update the weight
				if (newWei[j] > cons[j]) { //over the constrain
					return -1;
				}
			}
			newValue += v[i];
		}

		//calculate the value
	}
	return newValue;
}
//the default constructor by random
partical::partical(vector<vector<int>> Wei, vector<int> v,
	vector<int> constrain, int maxs, int dim) {
	value = 0;
	dimention = dim;

	for (int i = 0; i < dimention; i++) {

		weight.push_back(0);
	}
	for (int i = 0; i < maxs; i++) {
		position.push_back(0);
		velocity.push_back(0.0);
		localP.push_back(0);
	}
			
	bool flag = true;

	while (flag) {
		int randN = rand() % maxs; //generate random number
		if (position[randN] == 0) {
			for (int i = 0; i < dimention; i++) {
				weight[i] += Wei[randN][i];
				if (weight[i] > constrain[i]) {
					weight[i] - Wei[randN][i];
					flag = false;
					break;
				}
			}
			if (flag == false)break;
			position[randN] = 1;
			localP[randN] = 1;
			value += v[randN];

		}
	}

}
class swarm {
public:
	int optimal; //the global optimal value
	vector<partical> swarmPart;
	vector<int> vect_v;  //the value of each item
	vector<double> globalP;  //the optimal particle position
	vector<vector<int>> vect_w;
	vector<int> vect_c;
	//default constructer
	swarm() {
		optimal = 0;
	}
	void envolve(double c1, double c2, double inertia); 
};
void swarm::envolve(double c1, double c2, double inertia) {
	//the envolution of swarm
	//change the position of each particle
	for (int i = 0; i < swarmPart.size(); i++) {
		//process each particle
		vector<double> nextVelocity;
		for (int j = 0; j < swarmPart[i].position.size(); j++) {
			//calculate every element of velocity
			double rand1 = rand() % 100 / 100.0;
			double rand2 = rand() % 100 / 100.0;
			double curV = inertia * swarmPart[i].velocity[j];
			curV += c1 * rand1*(swarmPart[i].localP[j] - swarmPart[i].position[j]);
			curV += c2 * rand2*(globalP[j] - swarmPart[i].position[j]);
			//add the random search
			//curV += (rand() % 10 - 5) / 5.0;
			nextVelocity.push_back(curV);
		}
		//record the old veriable
		vector<double> oldvelo = swarmPart[i].velocity;
		vector<double> oldPosition = swarmPart[i].position;
		vector<int> oldweight = swarmPart[i].weight;
		int oldvalue = swarmPart[i].value;


		swarmPart[i].velocity = nextVelocity;
		//update the position 
		for (int j = 0; j < swarmPart[i].position.size(); j++)
			swarmPart[i].position[j] += nextVelocity[j];
		//calculate the value
		int newValue = swarmPart[i].update(vect_v, vect_w, vect_c);
		if (newValue == -1) { //invalid update ,roll back
			swarmPart[i].velocity = oldvelo;
			swarmPart[i].position = oldPosition;
			swarmPart[i].weight = oldweight;
			swarmPart[i].value = oldvalue;
		}
		else { //update the value ,local and global
			if (newValue > optimal) {
				//greater than the best value,update the global value
				optimal = newValue;
				globalP = swarmPart[i].position;

				swarmPart[i].localP = swarmPart[i].position;
				swarmPart[i].value = newValue;

			}
			else if (newValue > oldvalue) {
				//update the local
				swarmPart[i].localP = swarmPart[i].position;
				swarmPart[i].value = newValue;
			}

		}
		//finish the envolution of one part
	}

}
int main(int argc,char* argv[])
{
	srand((unsigned)time(NULL)); //设置随机种子后 随机数会形成固定的序列
	//process the input from file  mknapcb1.txt
	string filename = "mknapcb1.txt";
	string out = "solution.txt";
	//string filename = argv[0];
	//string out = argv[1];

	ifstream file(filename);
	ofstream outfile(out, ios::trunc);
	outfile << "# of problems" << endl;
	int probNum; //the number of problem
	

	if (!file.is_open()) {
		cout << "Can not open this file" << endl;
		return 0;
	}
	//input the data
	file >> probNum;
	for (int p = 0; p < probNum; p++) {

		int itemSize; //the number of items
		int dimension;
		int optimalValue; //the most optimal value 

		file >> itemSize;
		file >> dimension;
		file >> optimalValue;

		vector<vector<int>> weight(itemSize, vector<int>(dimension, 0));
		vector<int> value(itemSize, 0);
		vector<int> constrain(dimension, 0);
		//input the value
		for (int i = 0; i < itemSize; i++) {
			file >> value[i];
		}
		//intput the weight
		for (int i = 0; i < dimension; i++)
			for (int j = 0; j < itemSize; j++)
				file >> weight[j][i];

		for (int i = 0; i < dimension; i++)
			file >> constrain[i];
		
		//initial a swarm
		swarm swa;
		swa.vect_v = value;
		swa.vect_w = weight;
		swa.vect_c = constrain;
		int partNum = 6*itemSize;  //define the number of particle
		
		//random partical
		int maxV = 0;
		for (int i = 0; i < partNum; i++) {
			partical p(weight,value,constrain,itemSize,dimension);
			if (p.value > maxV) {
				maxV = p.value;
				swa.optimal = maxV;
				swa.globalP = p.position;
				
			}
			swa.swarmPart.push_back(p);
		}

		//set the parametre of envolue
		//Inertia weight para
		
		double c1 = 1;  //local weight
		double c2 = 0.5;  //global weight
		int iter = 300;    //the quantity of iterator
		int maxv = swa.optimal;
		for (int i = 0; i < iter; i++) {
			double inertia = (rand()%10)/20.0;
			swa.envolve(c1, c2, inertia);
			if (swa.optimal > maxv) {
				maxv = swa.optimal;
				//cout <<i<<"  "<< maxv*1.0/ optimalValue << endl;
			}

		}
		//cout << maxv << endl;		
		//cout << endl;
		outfile << "objective value of instance " << p + 1 << endl;
		//outfile << maxv << endl;
		for (int i = 0; i < swa.globalP.size(); i++) {
			outfile << swa.globalP[i] << " ";
		}
		outfile << endl;
		cout << "objective value of instance " << p + 1 << endl;
		cout << maxv << endl;
		
		
	}
	file.close();
	outfile.close();
	cout << "All solutions are feasible with correct objective values." << endl;


	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值