#include<random>
#include <iostream>
#include<vector>
#include<fstream>
#include <time.h>
using namespace std;
//rewrite the <
bool operator<(vector<int>&a ,vector<int>&b) {
bool res = true;
if (a.size() != b.size())return false;
for (int i = 0; i < a.size(); i++)
if (a[i] > b[i]) {
res = false;
break;
}
return res;
}
//rewrite the operator *
vector<int> operator*(vector<int>&a, int b) {
for (int i = 0; i < a.size(); i++) {
a[i] *= b;
}
return a;
}
class partical { //the partical in pso algorithm
public:
int dimention; //dimention of position
int value;
vector<int> weight;
vector<double> localP; //local best position
vector<double> velocity; //current velocity
//int maxsize; //the maximum of size
vector<double> position; //the position of this particle
//the default constructor by random
partical(vector<vector<int>> Wei, vector<int> v,
vector<int> constrain, int maxs, int dim);
//update the position and w
int update(vector<int> v,vector<vector<int>> w, vector<int> cons); //return value ,para:weight
};
int partical::update(vector<int> v,vector<vector<int>> w,vector<int> cons) { //return the value
int newValue = 0;
vector<int> newWei(dimention,0);
for (int i = 0; i < position.size(); i++) {
if (position[i] < 0.5)position[i] = 0;
else position[i] = 1;
if (position[i] == 1) {
for (int j = 0; j < dimention; j++) {
newWei[j] += w[i][j]; //update the weight
if (newWei[j] > cons[j]) { //over the constrain
return -1;
}
}
newValue += v[i];
}
//calculate the value
}
return newValue;
}
//the default constructor by random
partical::partical(vector<vector<int>> Wei, vector<int> v,
vector<int> constrain, int maxs, int dim) {
value = 0;
dimention = dim;
for (int i = 0; i < dimention; i++) {
weight.push_back(0);
}
for (int i = 0; i < maxs; i++) {
position.push_back(0);
velocity.push_back(0.0);
localP.push_back(0);
}
bool flag = true;
while (flag) {
int randN = rand() % maxs; //generate random number
if (position[randN] == 0) {
for (int i = 0; i < dimention; i++) {
weight[i] += Wei[randN][i];
if (weight[i] > constrain[i]) {
weight[i] - Wei[randN][i];
flag = false;
break;
}
}
if (flag == false)break;
position[randN] = 1;
localP[randN] = 1;
value += v[randN];
}
}
}
class swarm {
public:
int optimal; //the global optimal value
vector<partical> swarmPart;
vector<int> vect_v; //the value of each item
vector<double> globalP; //the optimal particle position
vector<vector<int>> vect_w;
vector<int> vect_c;
//default constructer
swarm() {
optimal = 0;
}
void envolve(double c1, double c2, double inertia);
};
void swarm::envolve(double c1, double c2, double inertia) {
//the envolution of swarm
//change the position of each particle
for (int i = 0; i < swarmPart.size(); i++) {
//process each particle
vector<double> nextVelocity;
for (int j = 0; j < swarmPart[i].position.size(); j++) {
//calculate every element of velocity
double rand1 = rand() % 100 / 100.0;
double rand2 = rand() % 100 / 100.0;
double curV = inertia * swarmPart[i].velocity[j];
curV += c1 * rand1*(swarmPart[i].localP[j] - swarmPart[i].position[j]);
curV += c2 * rand2*(globalP[j] - swarmPart[i].position[j]);
//add the random search
//curV += (rand() % 10 - 5) / 5.0;
nextVelocity.push_back(curV);
}
//record the old veriable
vector<double> oldvelo = swarmPart[i].velocity;
vector<double> oldPosition = swarmPart[i].position;
vector<int> oldweight = swarmPart[i].weight;
int oldvalue = swarmPart[i].value;
swarmPart[i].velocity = nextVelocity;
//update the position
for (int j = 0; j < swarmPart[i].position.size(); j++)
swarmPart[i].position[j] += nextVelocity[j];
//calculate the value
int newValue = swarmPart[i].update(vect_v, vect_w, vect_c);
if (newValue == -1) { //invalid update ,roll back
swarmPart[i].velocity = oldvelo;
swarmPart[i].position = oldPosition;
swarmPart[i].weight = oldweight;
swarmPart[i].value = oldvalue;
}
else { //update the value ,local and global
if (newValue > optimal) {
//greater than the best value,update the global value
optimal = newValue;
globalP = swarmPart[i].position;
swarmPart[i].localP = swarmPart[i].position;
swarmPart[i].value = newValue;
}
else if (newValue > oldvalue) {
//update the local
swarmPart[i].localP = swarmPart[i].position;
swarmPart[i].value = newValue;
}
}
//finish the envolution of one part
}
}
int main(int argc,char* argv[])
{
srand((unsigned)time(NULL)); //设置随机种子后 随机数会形成固定的序列
//process the input from file mknapcb1.txt
string filename = "mknapcb1.txt";
string out = "solution.txt";
//string filename = argv[0];
//string out = argv[1];
ifstream file(filename);
ofstream outfile(out, ios::trunc);
outfile << "# of problems" << endl;
int probNum; //the number of problem
if (!file.is_open()) {
cout << "Can not open this file" << endl;
return 0;
}
//input the data
file >> probNum;
for (int p = 0; p < probNum; p++) {
int itemSize; //the number of items
int dimension;
int optimalValue; //the most optimal value
file >> itemSize;
file >> dimension;
file >> optimalValue;
vector<vector<int>> weight(itemSize, vector<int>(dimension, 0));
vector<int> value(itemSize, 0);
vector<int> constrain(dimension, 0);
//input the value
for (int i = 0; i < itemSize; i++) {
file >> value[i];
}
//intput the weight
for (int i = 0; i < dimension; i++)
for (int j = 0; j < itemSize; j++)
file >> weight[j][i];
for (int i = 0; i < dimension; i++)
file >> constrain[i];
//initial a swarm
swarm swa;
swa.vect_v = value;
swa.vect_w = weight;
swa.vect_c = constrain;
int partNum = 6*itemSize; //define the number of particle
//random partical
int maxV = 0;
for (int i = 0; i < partNum; i++) {
partical p(weight,value,constrain,itemSize,dimension);
if (p.value > maxV) {
maxV = p.value;
swa.optimal = maxV;
swa.globalP = p.position;
}
swa.swarmPart.push_back(p);
}
//set the parametre of envolue
//Inertia weight para
double c1 = 1; //local weight
double c2 = 0.5; //global weight
int iter = 300; //the quantity of iterator
int maxv = swa.optimal;
for (int i = 0; i < iter; i++) {
double inertia = (rand()%10)/20.0;
swa.envolve(c1, c2, inertia);
if (swa.optimal > maxv) {
maxv = swa.optimal;
//cout <<i<<" "<< maxv*1.0/ optimalValue << endl;
}
}
//cout << maxv << endl;
//cout << endl;
outfile << "objective value of instance " << p + 1 << endl;
//outfile << maxv << endl;
for (int i = 0; i < swa.globalP.size(); i++) {
outfile << swa.globalP[i] << " ";
}
outfile << endl;
cout << "objective value of instance " << p + 1 << endl;
cout << maxv << endl;
}
file.close();
outfile.close();
cout << "All solutions are feasible with correct objective values." << endl;
return 0;
}