hdu 4565 So Easy! 矩阵快速幂

证明见:传送门 。之后就是矩阵快速幂了

#include<stdio.h>
#include<string.h>
#include<math.h>
const int N=2;
typedef long long LL;
struct Matrix{
    int a[N][N];
    void init(){
        memset(a,0,sizeof a);
    }
    void unit(){
        memset(a,0,sizeof a);
        for(int i=0;i<N;i++)
            a[i][i]=1;
    }
};
int a,b,n,m;

Matrix multiply(Matrix x,Matrix y){//矩阵乘
    Matrix rst;
    rst.init();
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++)
            for(int k=0;k<N;k++){
                rst.a[i][j]+=x.a[i][k]*y.a[k][j];
                rst.a[i][j]%=m;
            }
    }
    return rst;
}

Matrix _pow(Matrix a,int p){//快速幂
    Matrix rst;
    rst.unit();
    while(p){
        if(p&1)
            rst=multiply(rst,a);
        a=multiply(a,a);
        p>>=1;
    }
    return rst;
}

void solve(int n){
    Matrix A,B,C;
    A.a[0][0]=(2*a) % m;
    A.a[0][1]=((b-a*a)%m+m)%m;
    A.a[1][0]=1;
    A.a[1][1]=0;
    B=_pow(A,n);
    C.a[0][0]=(2*(a*a%m)%m+2*b)%m;
    C.a[1][0]=(2*a)%m;
    C.a[0][1]=C.a[1][1]=0;

    if(n==0)  
        printf("%d\n",C.a[0][0]%m);
    else{
        A=multiply(B,C);
        printf("%d\n",A.a[0][0]%m);  
    }
}

int main(){
    while(~scanf("%d%d%d%d",&a,&b,&n,&m)){
        if(n==1)
            printf("%d\n", (int)ceil((a*1.0+sqrt(b*1.0))*1.0)%m);  
        else
            solve(n-2);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值