二人零和博弈

博弈论
方法1:dp,记忆化搜索
dp[i]表示某种情况是N或者P,如果所有子情况中含有P,则该情况为N。(P无法转移到P)

方法2:推导结论

根据定义,证明一种判断position的性质的方法的正确性,只需证明三个命题: 
1、这个判断将所有最终 position判为P-position;
2、根据这个判断被判为N-position的局面一定可以移动到某个P-position;
3、根据这个判断被判为P-position的局面无法移动到某个P-position。


举例:Nim游戏结论——异或和为0为P-position。

关于Nim游戏结论的证明:
1.  全0时为P,异或仍然为0
2. 对于某个(a1^a2^...^an)=k  一定有一个数ai在k的最高位上为1,ai^k<ai,把ai->ai^k即可把异或和变成0
3. 异或满足消去率,所以ai=ai' 不是一个合法的移动。


关于求SG的博弈练习:

http://blog.csdn.net/jxy859/article/details/6722660
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
对于一个二人博弈,我们可以通过收益矩阵来表示游戏的规则。其中,矩阵中的每个元素表示在不同的策略下,第一个玩家可以获得的收益,同时也等于第二个玩家损失的收益。 我们可以通过混合策略来表示每个玩家在每个可行的策略中选择的概率分布。这些概率的组合构成了一个概率向量,可以表示为一个n维向量。因此,我们可以将两个玩家的策略向量表示为$p$和$q$。 假设$p$和$q$是混合策略均衡,那么$p$和$q$满足以下条件: 1. 对于所有的$i$,$p_i\geq0$且$\sum_{i=1}^np_i=1$ 2. 对于所有的$j$,$q_j\geq0$且$\sum_{j=1}^nq_j=1$ 3. 对于任意的$i$和$j$,有$m_{ij}\cdot p_i+(1-m_{ij})\cdot(1-p_i)=m_{ji}\cdot q_j+(1-m_{ji})\cdot(1-q_j)$ 其中,$m_{ij}$表示在第一个玩家选择第$i$个策略,第二个玩家选择第$j$个策略时的收益。 我们可以将这个问题转化为一个线性规划问题,其中我们需要最大化第一个玩家的收益。我们可以将第一个玩家的收益表示为$p^T\cdot M\cdot q$,其中$M$表示收益矩阵,$p^T$表示$p$的转置。同时,我们需要保证$p$和$q$满足上述3个条件。 因此,我们可以定义以下线性规划问题: $$ \begin{aligned} \max_{p,q} \quad & p^T\cdot M\cdot q \\ s.t. \quad & \sum_{i=1}^np_i=1 \\ & \sum_{j=1}^nq_j=1 \\ & p_i\geq0, \quad q_j\geq0 \\ & m_{ij}\cdot p_i+(1-m_{ij})\cdot(1-p_i)=m_{ji}\cdot q_j+(1-m_{ji})\cdot(1-q_j), \quad \forall i,j \\ \end{aligned} $$ 同时,我们也可以定义对偶问题,通过对偶问题来证明混合策略均衡等价于线性规划问题。 对偶问题的定义如下: $$ \begin{aligned} \min_{\lambda,\mu} \quad & \lambda^T\cdot \mathbf{1} + \mu^T\cdot \mathbf{1} \\ s.t. \quad & \lambda_i+\mu_j\geq M_{ij}, \quad \forall i,j \\ & \lambda_i\geq0, \quad \mu_j\geq0 \\ \end{aligned} $$ 其中,$\lambda$和$\mu$分别表示第一个和第二个玩家的对偶变量,$\mathbf{1}$表示全1向量,$M$表示收益矩阵。 通过线性规划的对偶性定理,我们可以证明混合策略均衡等价于线性规划问题以及对应的对偶问题。具体而言,我们可以证明: 1. 如果$p$和$q$是混合策略均衡,则存在一组对偶变量$\lambda$和$\mu$,满足$\lambda_i+\mu_j\geq M_{ij}$,同时$p_i=\frac{1}{\sum_{j=1}^n \mu_j}\cdot \mu_i$,$q_j=\frac{1}{\sum_{i=1}^n \lambda_i}\cdot \lambda_j$。 2. 如果存在一组对偶变量$\lambda$和$\mu$,满足$\lambda_i+\mu_j\geq M_{ij}$,则$p_i=\frac{1}{\sum_{j=1}^n \mu_j}\cdot \mu_i$和$q_j=\frac{1}{\sum_{i=1}^n \lambda_i}\cdot \lambda_j$构成一个混合策略均衡。 因此,我们可以通过线性规划问题和对偶问题来求解二人博弈的混合策略均衡。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值