题目
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。
每步 可以删除任意一个字符串中的一个字符。
示例
输入: word1 = “sea”, word2 = “eat”
输出: 2
解释: 第一步将 “sea” 变为 “ea” ,第二步将 "eat "变为 “ea”
解析
这道题和上一道不同的地方在于,本题是两个字符串都可以删除,整体思路和之前的一样;
用动归五部曲分析下:
1.确定dp数组及其含义
dp[i][j]表示,以i-1结尾的字符串word1和以j-1结尾的字符串word2,要想达到相等,需要删除元素的最少次数
2.确定递推公式
还是分两个部分:
当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];为啥等于-1呢,就相当于,两个字符串这个位置的值是相同的,那么删了也是一样的;
当word1[i - 1] 与 word2[j - 1]不相同的时候,就会有如下三种场景:
- 删掉word[i-1],则有dp[i-1][j] + 1
- 删掉word[j-1], 则有dp[i][j-1] + 1
- 都删掉,则有dp[i - 1][j - 1] + 2
三者取最小值即可(先不优化了)
3.初始化dp数组
dp[i][0],根据dp数组的含义,表示word2是一个空字符串,那么以i-1结尾的word1,需要删除0-i-1共i个元素,才能成为空串;
do[0][j]同理
func minDistance(word1 string, word2 string) int {
m := len(word1)
n := len(word2)
dp := make([][]int, m+1)
for i := range dp {
dp[i] = make([]int, n+1)
}
// 初始化第一行
for i := range dp {
dp[i][0] = i
}
for j := range dp[0] {
dp[0][j] = j
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if word1[i-1] == word2[j-1] {
dp[i][j] = dp[i-1][j-1]
} else {
dp[i][j] = min(min(dp[i-1][j] + 1, dp[i][j-1] + 1), dp[i-1][j-1] + 2)
}
}
}
return dp[m][n]
}
func min(a, b int) int {
if a < b {
return a
}
return b
}