84 柱状图中最大的矩形

题目

给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。

求在该柱状图中,能够勾勒出来的矩形的最大面积。

示例

输入:heights = [2,1,5,6,2,3]
输出:10
解释:最大的矩形为图中红色区域,面积为 10
在这里插入图片描述

解析

首先这道题整体的思路上分为:求出每个位置的最大矩形面积,然后整体选择最大的那个。在此基础上,要求每个位置的最大面积,高度首先有了是heights[i],主要是宽度,宽度的取法是:

  • 在 i 左侧的小于 h 的最近元素的下标 left。
  • 在 i 右侧的小于 h 的最近元素的下标 right

那么面积就是:h⋅(right−left−1)。
在此基础上,要直到最近的下标,可以用单调栈来保存,然后将符合的结果分别放到left和right数组中进行保存。若栈中没有数据,那么left里面放-1,right里面放n

func largestRectangleArea(heights []int) int {
	n := len(heights)
	left := make([]int, n)
	stack := []int{}
	for i := 0; i < n; i++ {
		for len(stack) > 0 && heights[i] <= heights[stack[len(stack)-1]] {
			stack = stack[:len(stack)-1]
		}
		if len(stack) > 0 {
			left[i] = stack[len(stack)-1]
		} else {
			left[i] = -1
		}
		stack = append(stack, i)
	}
	stack = []int{}
	right := make([]int, n)
	for i := n - 1; i >= 0; i-- {
		for len(stack) > 0 && heights[i] <= heights[stack[len(stack)-1]] {
			stack = stack[:len(stack)-1]
		}
		if len(stack) > 0 {
			right[i] = stack[len(stack)-1]
		} else {
			right[i] = n
		}
		stack = append(stack, i)
	}
	var ans int 
	for i, val := range heights {
		ans = max(ans, val*(right[i]-left[i]-1))
	}
	return ans
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值