当前有效matplotlib
版本为:3.4.1
。
概述
boxplot()
函数的作用是绘制箱线图(箱线图、盒须图、箱图)。
箱形图(boxplot)又称盒须图或箱线图,是一种用来显示某一组数据分散情况的统计图,因形状如箱子而得名。箱形图是由美国的统计学家约翰·图基(JohnTukey)在1977年发明的。箱形图主要用于反映原始数据的分布特征,还可以实现多组数据分布特征的比较。它是由六种数值组成:异常值(outlier/flier)、最小值(min)、下四分位数(Q1,即第25%分位数)、中位数(median,即第50%分位数)、上四分位数(Q3,即第75%分位数)、最大值(max)。
函数的签名为matplotlib.pyplot.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_ticks=True, autorange=False, zorder=None, *, data=None)
。
函数的参数为:
-
x
:输入数据。类型为数组或向量序列。必备参数。 -
notch
:控制箱体中央是否有V型凹槽。当取值为True
时,箱体中央有V型凹槽,凹槽表示中位数的置信区间;取值为False
时,箱体为矩形。类型为布尔值,默认值为False
。可选参数。 -
sym
:离群点的默认标记符号,详解flierprops
参数。类型为字符串,默认值为'None'
。可选参数。取值为''
隐藏离群点,取值为'None'
时,取值为'b+'
。 -
vert
:箱体的方向,当取值为True
时,绘制垂直箱体,当取值为False
时,绘制水平箱体。类型为布尔值,默认值为True
。可选参数。 -
whis
:箱须的位置。类型为浮点数或浮点数二元组,默认值为1.5
。 可选参数。- 浮点数,则下箱须位于高于
Q1-whis*(Q3-Q1)
的最低数据处,上箱须位于低于Q3+whis*(Q3-Q1)
下方的最高数据处,其中Q1
和Q3
分别为下四分位数和上四分位数。默认值whis=1.5
对应于箱线图的原始定义。 - 浮点数元组,则表示要在绘制箱须的百分位数(例如,
(5,95)
)。将其设置为(0,100)
箱须覆盖整个数据范围。
当Q1==Q3
时,如果autorange
为True
,whis
将自动设置为(0,100)
。
箱须范围之外的数据将被视为异常值,绘制为点。
- 浮点数,则下箱须位于高于
-
bootstrap
:是否使用bootstrap
方法计算中位数置信区间。类型为整数。可选参数。当参数取值为None
时,中位数置信区间由某种高斯渐进逼近算法确定。否则,采用bootstrap
方法求中位数95%置信区间,bootstrap
参数定义了抽样次数。建议取值范围为1000-10000
。 -
usermedians
:是否指定中位数。类型为一维类数组结构。可选参数。对于一维数组,数组元素个数为1
,对于多维数组,长度等于len(x)
。如果元素不为None
,则将该值强制设置为对应数据集的中位数;如果元素为None
,则由matplotlib
生成中位数。 -
conf_intervals
:是否指定置信区间。类型为类数组结构,形状为(len(x), 2)
。可选参数。如果元素不为None
,则将该值强制设置为箱体V型凹槽位置(只有当notch
参数为True
时绘制);如果元素为None
,箱体V型凹槽的位置由其他参数计算,例如bootstrap
。 -
positions
:指定箱体的位置。刻度和极值会自动匹配箱体位置。类型为类数组结构。可选参数。默认值为range(1, N+1)
,N
为箱线图的个数。 -
widths
:箱体的宽度。类型为浮点数或类数组结构。默认值为0.5
或0.15*极值间的距离
。 -
patch_artist
:控制箱体的生成对象。类型为布尔值,默认值为False
。可选参数。当取值为False
时,箱体由Line2D
生成,否则,箱体由Patch
对象生成。 -
labels
:每个数据集的标签,默认值为'None'
。类型为序列。可选参数。 -
manage_ticks
:控制刻度和标签位置,取值为True
时,刻度和标签位置自动匹配箱线图的位置。类型为布尔值,默认值为True
。可选参数。 -
autorange
:类型为布尔值,默认值为False
。可选参数。当取值为True
且数据分布满足上四分位数(75%)和下四分位数(25%)相等,whis
设置为(0, 100)
,即箱须端点为数据的最大值和最小值。 -
meanline
:均值显示为线还是点。类型为布尔值,默认值为False
。可选参数。当取值为True
,且showmeans
、shownotches
参数均为True
,时显示为线,线条属性受meanprops
参数控制;否则显示为点。 -
zorder
:箱线图的叠放次序。类型为浮点数,默认值为Line2D.zorder = 2
。可选参数。 -
showcaps
:是否显示箱须两端的横杠。类型为布尔值,默认值为True
。可选参数。 -
showbox
:是否显示箱体。类型为布尔值,默认值为True
。可选参数。 -
showfliers
:是否显示离群值。类型为布尔值,默认值为True
。可选参数。 -
showmeans
:是否显示算术平均值。类型为布尔值,默认值为False
。可选参数。 -
capprops
:箱须横杠的样式。类型为字典,默认值为None
。可选参数。 -
boxprops
:箱体的样式。类型为字典,默认值为None
。可选参数。 -
whiskerprops
:箱须的样式。类型为字典,默认值为None
。可选参数。 -
flierprops
:离群点的样式。类型为字典,默认值为None
。可选参数。 -
medianprops
:中位数的样式。类型为字典,默认值为None
。可选参数。 -
meanprops
:算术平均值的样式。类型为字典,默认值为None
。可选参数。
函数返回值为字典对象。该字典将箱线图的每个组件都映射为一个Line2D
实例列表。字典的键如下:
boxes
:箱体。medians
:表示中位数的线。whiskers
: 箱须线。caps
:箱须端点的横杠。fliers
: 离群点数据。means
:表示均值的点或线。
案例:演示notch
参数显示V型凹槽
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(211)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(212)
plt.title("设置V型凹槽")
plt.boxplot(data, notch=True)
plt.show()
案例:演示sym
参数指定离群点样式
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(221)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(222)
plt.title("隐藏离散点")
plt.boxplot(data, sym='')
plt.subplot(223)
plt.title("设置离散点样式")
plt.boxplot(data, sym='b+')
plt.subplot(224)
plt.title("设置离散点样式")
plt.boxplot(data, sym='r^')
plt.show()
案例:演示vert
参数指定箱线图方向
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("隐藏离散点")
plt.boxplot(data, vert=False)
plt.show()
案例:演示whis
参数指定箱须位置
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("指定箱须位置")
plt.boxplot(data, whis=(5, 95))
plt.show()
案例:演示usermedians
参数指定中位数值
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("指定中位数")
plt.boxplot(data, usermedians=[0.5])
plt.show()
案例:演示conf_intervals
参数指定置信区间
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("指定置信区间")
plt.boxplot(data, notch=True, conf_intervals=[(-0.3,0.4)])
plt.show()
案例:演示positions
参数指定箱线图的位置
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("指定箱线图的位置")
plt.boxplot(data, positions=[3])
plt.show()
案例:演示widths
参数指定箱体的宽度
import matplotlib.pyplot as plt
import numpy as np
plt.rcParams['font.family'] = 'simhei'
plt.rcParams['axes.unicode_minus'] = False
data = np.random.normal(size=1000)
plt.subplot(121)
plt.title("默认样式")
plt.boxplot(data)
plt.subplot(122)
plt.title("指定箱体宽度")
plt.boxplot(data, widths=0.5)
plt.show()