pandas案例:温差查询

任务详情

给定一各地 2016 年 1 月和 2 月各个时间点的温度表格,表格预览见页面下方。
数据表的第二列表示当前时间,数据表第一行第三列到第一行最后一列表示地点。
如:表格的第二行第三列 30.36 表示:Vancouver (温哥华)在 2016-01-01 00:00:00 这一时刻的温度是 30.36 度(华氏度)。
程序给定一个日期(date)和一个地点(place),要求返回该地在这个日期下的温差(摄氏度)。
注意:华氏度需要转换成摄氏度!
华氏度转摄氏度公式:摄氏度 = (华氏度 - 32) * 5 / 9
温差:某日最高温度 - 某日最低温度

任务要求

程序给定日期 date 和地点 place 的数据类型均是 str 类型;
程序返回结果的数据类型是 float 类型,如果最终结果是 numpy.float64 数据类型,请手动转换成 Python 原生的 float 数据类型;
结果需要四舍五入保留小数点后 2 位,请在得到最终结果后处理小数问题,否则可能导致结果有偏差。

测试用例

输入:date = ‘2月5日’,place = ‘Dallas’
输出:-5.05
解释:查询表格可知,Dallas 在 2月 5 日温度的最高值和最低值分别是 57.09 华氏度和 34.18 华氏度,
两者的温差是 22.91 华氏度,转换为摄氏度:(22.91 - 32) * 5 / 9 = -5.05

输入:date= ‘2月18日’,place = ‘Houston’
输出:-1.78
解释:查询表格可知,Dallas 在 2月 5 日温度的最高值和最低值分别是 75.7 华氏度和 46.9 华氏度,
两者的温差是 28.8 华氏度,转换为摄氏度:(28.8 - 32) * 5 / 9 = -1.7777…. ≈ 1.78

输入:date = ‘1月21日’,place = 'Las Vegas’
输出:-1.99

任务实现

import pandas


class Solution:
    def temperature(self, date: str, place: str) -> float:
        # 将查询日期转换为日期字符串
        month, day_ = date.split("月")
        day, _ = day_.split("日")
        if len(month) == 1:
            month = "0" + month
        if len(day) == 1:
            day = "0" + day
        date_str = "2016" + "-" + month + "-" + day
        # 读取数据
        url = "http://ws1.itmc.org.cn:80/JS00101/data/user/4799/208/fj_4097_temperature_2016_1_2.csv"
        temperature_data = pandas.read_csv(url, sep=",")
        # 获取数据的日期字符串
        temperature_data["day"] = temperature_data["datetime"].str[:10]
        # 根据日期字符串选择指定日期数据行
        day = temperature_data[temperature_data["day"] == date_str]
        # 根据地点选择选择温度数据行
        city = day[place]
        # 温度单位转换
        temperature = (city.max() - city.min() - 32) * 5 / 9
        # 温度精度处理
        return float(temperature.round(2))


print(Solution.temperature(Solution, date="2月5日", place="Dallas"))
print(Solution.temperature(Solution, date="2月18日", place="Houston"))
print(Solution.temperature(Solution, date="1月21日", place="Las Vegas"))

输出为:

-5.05
-1.78
-1.99
### Xarray `groupby` 的用法 Xarray 提供了强大的数据分组功能,允许基于坐标变量或其他维度对多维数组进行分组操作。通过 `groupby` 方法可以实现类似于 Pandas 中的数据聚合和转换。 #### 基本语法 ```python import xarray as xr # 创建一个简单的 DataArray 示例 da = xr.DataArray( [[1, 2], [3, 4]], dims=('x', 'y'), coords={'letters': ('x', ['a', 'b'])} ) # 使用 groupby 进行简单统计计算 result_mean = da.groupby('letters').mean() print(result_mean) ``` 此代码片段展示了如何创建一个二维的 `DataArray` 并按指定坐标轴 (`'letters'`) 对其应用平均值运算[^2]。 #### 高级特性 除了基本的操作外,还可以执行更复杂的分析: - **自定义函数**: 可以传递任意 Python 函数给 `.apply()` 来处理每组内的数据。 - **多个维度上的分组**: 支持同时沿不同维度进行分组,例如时间序列中的月份与年份组合。 - **广播机制**: 当涉及到不均匀网格或者缺失值的情况时,xarray 能够自动处理这些复杂情形下的广播规则[^4]。 #### 实际案例演示 假设有一个包含多年逐日气温记录的时间序列数据集,想要获取每个月的最大温度分布情况,则可以通过如下方式来完成这一任务: ```python ds = xr.open_dataset("temperature_data.nc") monthly_max_temps = ds['temp'].resample(time='M').max() daily_groups_by_month = ds['temp'].groupby(ds.time.dt.month).max() print(monthly_max_temps) print(daily_groups_by_month) ``` 上述例子说明了两种不同的方法来获得月度最大温差的结果:一种是利用重采样技术;另一种则是直接采用 `groupby` 结合日期属性来进行分组解.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值