hdu1863畅通工程 最小生成树 Kruskal算法

Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
 

Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
 

Sample Input
  
  
3 3 1 2 1 1 3 2 2 3 4 1 3 2 3 2 0 100
 

Sample Output
  
  
3 ?

思路:最小生成树 畅通时,路线条数是村庄个数-1

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<cmath>
#include<algorithm>
#include<string>
#include<string.h>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<functional> 
#include<map>
using namespace std;

int father[105];
int n, m;
int ans;

struct node {
	int a, b, len;
};
node edge[105];

int cmp(const node& a, const node& b) {
	return a.len<b.len;
}

void makeSet() {
	for (int i = 0; i <= 100; i++) father[i] = i;
}

int Find(int x) {
	int root = x;
	while (root != father[root]) {
		root = father[root];
	}
	while (x != root) {
		int tmp = father[x];
		father[x] = root;
		x = tmp;
	}
	return root;
}

void Union(int x, int y) {
	int a = Find(x);
	int b = Find(y);
	if (a == b) return;
	else {
		father[a] = b;
	}
}
int main()
{
	while (scanf("%d %d", &n, &m) != EOF && n != 0) {
		int a, b;
		for (int i = 0; i < n; i++) {
			scanf("%d %d %d", &edge[i].a, &edge[i].b, &edge[i].len);
		}
		sort(edge, edge + n, cmp);
		makeSet();
		ans = 0;
		int k = 0;
		for (int i = 0; i < n; i++) {
			if (Find(edge[i].a) != Find(edge[i].b)) {//判断根节点是否一样
				Union(edge[i].a, edge[i].b);//一样就表示可以间接畅通
				ans += edge[i].len;
				k++;//路线条数
			}
		}
		//判断是否畅通
		if (k == m-1)printf("%d\n", ans);
		else printf("?\n");
	}
	//system("pause");
	return 0;
}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值