在做模式识别时,应用算法神经网络或者SVM训练时,要用到目标数据,每个样本对应一个目标向量,因此142个训练样本就要有142个目标向量,想了很久,终于构建出来了,构建的矩阵为142*7,目标对应的节点为1,其余为零
方法如下:
Mat labels=Mat::zeros(142,7,CV_8SC1);
Mat a=labels.rowRange(0,20);
a.colRange(0,1).setTo(1);
Mat b=labels.rowRange(20,39);
b.colRange(1,2).setTo(1);
Mat c=labels.rowRange(39,60);
c.colRange(2,3).setTo(1);
Mat d=labels.rowRange(60,81);
d.colRange(3,4).setTo(1);
Mat e=labels.rowRange(81,101);
e.colRange(4,5).setTo(1);
Mat f=labels.rowRange(101,122);
f.colRange(5,6).setTo(1);
Mat g=labels.rowRange(122,142);
g.colRange(6,7).setTo(1);
cout<<labels<<endl;
输出结果如下:
[1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
1, 0, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 1, 0, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 1, 0, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 1, 0, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 1, 0, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1;
0, 0, 0, 0, 0, 0, 1]