opencv神经网络训练时的目标矩阵构建方法

本文详细介绍了在模式识别任务中,如何使用算法神经网络和SVM进行训练,重点阐述了构建142个目标向量的过程,以及如何将这些向量应用于神经网络和SVM模型中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做模式识别时,应用算法神经网络或者SVM训练时,要用到目标数据,每个样本对应一个目标向量,因此142个训练样本就要有142个目标向量,想了很久,终于构建出来了,构建的矩阵为142*7,目标对应的节点为1,其余为零
方法如下:

        Mat labels=Mat::zeros(142,7,CV_8SC1);
        Mat a=labels.rowRange(0,20);
        a.colRange(0,1).setTo(1);
        Mat b=labels.rowRange(20,39);
        b.colRange(1,2).setTo(1);
        Mat c=labels.rowRange(39,60);
        c.colRange(2,3).setTo(1);
        Mat d=labels.rowRange(60,81);
        d.colRange(3,4).setTo(1);
        Mat e=labels.rowRange(81,101);
        e.colRange(4,5).setTo(1);
        Mat f=labels.rowRange(101,122);
        f.colRange(5,6).setTo(1);
        Mat g=labels.rowRange(122,142);
        g.colRange(6,7).setTo(1);
        cout<<labels<<endl;
    输出结果如下:
     [1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      1, 0, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 1, 0, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 1, 0, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 1, 0, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 1, 0, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 1, 0;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1;
      0, 0, 0, 0, 0, 0, 1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值