一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。
例如:3 * 3的方格。
1 3 3
2 1 3
2 2 1
能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。
Input
第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200)
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= Ai,ji,j <= 10000)
Output
输出能够获得的最大价值。
Sample Input
3 3 1 3 3 2 1 3 2 2 1
Sample Output
17
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int map[550][550]={0},dp[450][205][205]={0};
int sum,M,N;
void dfs(){
for(int step=2;step<N+M;step++){ //注意要步数先排,这样i==j才能确定为重合的点
for(int i=1;i<=N&&step-i>=0;i++){
for(int j=1;j<=N&&step-j>=0;j++){
if(i==1&&j==1) continue;
if(i!=j){
dp[step][i][j]=max(max(dp[step-1][i-1][j-1],dp[step-1][i][j]),max(dp[step-1][i-1][j],dp[step-1][i][j-1]))+map[i][step-i+1]+map[j][step-j+1];
}
else
dp[step][i][j]=max(max(dp[step-1][i-1][j-1],dp[step-1][i][j]),max(dp[step-1][i-1][j],dp[step-1][i][j-1]))+map[i][step-i+1];
}
}
}
}
int main(){
scanf("%d%d",&M,&N);
for(int i=1;i<=N;i++){
for(int j=1;j<=M;j++){
scanf("%d",&map[i][j]);
}
}
dp[1][1][1]=map[1][1];
dfs();
printf("%d\n",dp[N+M-1][N][N]);
return 0;
}