矩阵取数问题 V2

一个M*N矩阵中有不同的正整数,经过这个格子,就能获得相应价值的奖励,先从左上走到右下,再从右下走到左上。第1遍时只能向下和向右走,第2遍时只能向上和向左走。两次如果经过同一个格子,则该格子的奖励只计算一次,求能够获得的最大价值。

 

例如:3 * 3的方格。

 

1 3 3

2 1 3

2 2 1

 

能够获得的最大价值为:17。1 -> 3 -> 3 -> 3 -> 1 -> 2 -> 2 -> 2 -> 1。其中起点和终点的奖励只计算1次。

Input

第1行:2个数M N,中间用空格分隔,为矩阵的大小。(2 <= M, N <= 200) 
第2 - N + 1行:每行M个数,中间用空格隔开,对应格子中奖励的价值。(1 <= Ai,ji,j <= 10000)

Output

输出能够获得的最大价值。

Sample Input

3 3
1 3 3
2 1 3
2 2 1

Sample Output

17
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int map[550][550]={0},dp[450][205][205]={0};
int sum,M,N;
void dfs(){
	for(int step=2;step<N+M;step++){   //注意要步数先排,这样i==j才能确定为重合的点 
		for(int i=1;i<=N&&step-i>=0;i++){
			for(int j=1;j<=N&&step-j>=0;j++){
				if(i==1&&j==1) continue;
				if(i!=j){
				dp[step][i][j]=max(max(dp[step-1][i-1][j-1],dp[step-1][i][j]),max(dp[step-1][i-1][j],dp[step-1][i][j-1]))+map[i][step-i+1]+map[j][step-j+1];
				}
				else
				dp[step][i][j]=max(max(dp[step-1][i-1][j-1],dp[step-1][i][j]),max(dp[step-1][i-1][j],dp[step-1][i][j-1]))+map[i][step-i+1];
			}
		}
	}
}
int main(){

	scanf("%d%d",&M,&N);
	for(int i=1;i<=N;i++){
		for(int j=1;j<=M;j++){
			scanf("%d",&map[i][j]);
		}
	}
	dp[1][1][1]=map[1][1];
	dfs();
	printf("%d\n",dp[N+M-1][N][N]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值