27、编写一个函数,用于将一个整数提升到正整数次幂。调用名为x_to_the_n()的函数,该函数接受两个整数参数x和n。让该函数返回一个long int类型的值,表示计算x的n次幂的结果。
以下是一个满足要求的 C 语言函数示例:
#include <stdio.h>
long int x_to_the_n(int x, int n) {
long int result = 1;
for (int i = 0; i < n; i++) {
result *= x;
}
return result;
}
28、形如 ax² + bx + c = 0 的方程被称为二次方程,其中 a、b 和 c 为常量。例如 4x² - 17x - 15 = 0 就是一个二次方程,其中 a = 4,b = -17,c = -15。满足特定二次方程的 x 值,即方程的根,可以通过将 a、b 和 c 的值代入以下两个公式来计算:x₁ = (-b + √(b² - 4ac)) / (2a),x₂ = (-b - √(b² - 4ac)) / (2a)。如果 b² - 4ac 的值(称为判别式)小于零,方程的根 x₁ 和 x₂ 为虚数。编写一个程序来求解二次方程。该程序应允许用户输入 a、b 和 c 的值。如果判别式小于零,应显示一条消息表明根为虚数;否则,程序应继续计算并显示方程的两个根。
以下是用C语言实现的程序:
#include <stdio.h>
// 绝对值函数
float absoluteValue(float x) {
if (x < 0)
x = -x;
return (x);
}
// 平方根函数
float squareRoot(float x) {
const float epsilon = .00001;
float guess = 1.0;
while (absoluteValue(guess * guess - x) >= epsilon)
guess = (x / guess + guess) / 2.0;
return guess;
}
int main() {
float a, b, c;
float discriminant;
float root1, root2;
// 提示用户输入 a、b 和 c 的值
printf("请输入二次方程 ax² + bx + c = 0 中 a、b 和 c 的值:\n");
scanf("%f %f %f", &a, &b, &c);
// 计算判别式
discriminant = b * b - 4 * a * c;
if (discriminant < 0) {
// 判别式小于零,根为虚数
printf("该二次方程的根为虚数。\n");
} else {
// 计算并显示两个根
root1 = (-b + squareRoot(discriminant)) / (2 * a);
root2 = (-b - squareRoot(discriminant)) / (2 * a);
printf("该二次方程的两个根分别为:x1 = %f,x2 = %f\n", root1, root2);
}
return 0;
}
该程序首先定义了 absoluteValue()
和 squareRoot()
函数,然后在 main()
函数中提示用户输入 a、b 和 c 的值,计算判别式,根据判别式的值进行不同处理:若判别式小于零,输出根为虚数;否则,计算并输出两个根。
29、编写一个函数 prime(),如果其参数是质数则返回 1,否则返回 0。
以下是实现该功能的 C 语言代码:
#include <stdio.h>
#include <stdbool.h>
int prime(int num) {
if (num <= 1) {
return 0;
}
for (int i = 2; i * i <= num; i++) {
if (num % i == 0) {
return 0;
}
}
return 1;
}
30、编写一个名为arraySum()的函数,该函数接受两个参数:一个整数数组和数组中的元素数量。让该函数返回数组中元素的总和。
以下是 arraySum()
函数的实现:
#include <stdio.h>
int ar