【matlab】pcolor和colormap的使用

pcolor是matlab里绘制矩阵的函数,它可以把数据通过颜色表示出来。

但是它的使用,特别对于初学者来说,有点晦涩难懂。

我们通过几个问题来认识一下这个函数的使用

pcolor绘制的颜色从哪里来?

通过网上任意一些代码样例,可以使用pcolor绘制出颜色方格出来。但是它的颜色是怎么来的?
比如下面这段

C=zeros(10);
pcolor(C);

sample1
为什么是这种蓝绿色?

其实它的颜色由colormap来指定,matlab系统内部其实定义了一些色系,如下,
colormap色系
如果访问不了的官网的,我这里贴出来可以选择的类型

  • parula
  • turbo
  • hsv
  • hot
  • cool
  • spring
  • summer
  • autumn
  • winter
  • gray
  • bone
  • copper
  • pink
  • jet
  • lines
  • colorcube
  • prism
  • flag
  • white

第一个色系名字叫parula,它是系统默认的,所以如果不指定的话,它就是使用的parula。
也相当于使用了colormap default

我们换一个色系试一下呢,比如colormap autumn。看,颜色变了吧
autumn


pcolor绘制单元跟入参矩阵是什么关系?

pcolor的每一个cell绘制的其实是相邻(左右上下)4个点的左下角(列需要反转),该值在colormap中的位置。值如果是0,则为色系开始的颜色。值越大,选择颜色越往后。

那么矩阵的shape(M,N)则会对应pcolor绘制的cell shape(M-1,N-1)

相邻两个点的最大值,会作为分割colormap的份数。在Figure图显示框里,可以点击colormap来查看。
如下面的例子,

C = [10 8 6 4 2; 
     1  4 0 1 1;
     1  2 0 1 1;
     1  1 1 1 10];
% C=zeros(10);

pcolor(C);
% colormap(mymap)
colormap autumn

颜色分布示意

值得注意的时,这里的cell列的顺序跟矩阵中的顺序是相反的

虽然矩阵是

     10 8 6 4 2; 
     1  4 0 1 1;
     1  2 0 1 1;
     1  1 1 1 10

但是在pcolor中处理时,倒转为

	 1  1 1 1 10;
	 1  2 0 1 1;
	 1  4 0 1 1;
	 10 8 6 4 2; 

所以上图中取左下角是倒转后的取值


pcolor三个参数中前两个参数是干什么的?

pcolor有一种入参是三个的,如下
pcolor(X,Y,C)

其中X和Y是坐标。

举个例子来看,如下图4个cell,有6个点,这六个点的坐标我标记在图中。
在这里插入图片描述
坐标值如下:

                  (1,3)(2,3) (3,3)
                  (1,2)(2,2) (3,2)
                  (1,1)(2,1) (3,1)

写成X,Y则为:
X= [1,2,3;
1,2,3;
1,2,3]
Y= [1,1,1;
2,2,2;
3,3,3]

注意: cell的y轴还是做了反转

pcolor如何把cell描边?

可以通过EdgeColor 设置边的颜色,通过LineWidth设置边的宽度
通过下面的例子看一下,

C = [10 8 6 4 2; 
     1  4 0 1 1;
     1  2 0 1 1;
     1  1 1 1 10];
s = pcolor(C);
s.EdgeColor = [1 0.8 0.8];
s.LineWidth = 3;
colormap autumn

描边

pcolor怎么实现渐变色

渐变实际上是通过差插值interpolate实现的,具体是通过**FaceColor = ‘interp’;**来设置

C = [10 8 6 4 2; 
     1  4 0 1 1;
     1  2 0 1 1;
     1  1 1 1 10];
s = pcolor(C);
s.EdgeColor = [1 0.8 0.8];
s.LineWidth = 3;
s.FaceColor = 'interp';
colormap autumn

在这里插入图片描述

<think>好的,我现在要比较Batch Normalization(BN)Layer Normalization(LN)的区别、适用场景以及在深度学习中的对比。首先,我需要回忆这两种标准化方法的基本概念原理。 Batch Normalization是在2015年由Sergey IoffeChristian Szegedy提出的,主要用于加速深度神经网络的训练。它的核心思想是对每个小批量(mini-batch)的数据进行标准化处理,即对每个神经元的输入进行归一化,使其均值接近0,方差接近1。这样可以减少内部协变量偏移(Internal Covariate Shift),从而加快训练速度,并允许使用更高的学习率。BN通常在卷积神经网络(CNN)中应用广泛,特别是在图像处理任务中,比如ResNet等模型就大量使用了BN层[^1]。不过,BN的一个缺点是当batch size较小时,效果会变差,因为均值方差的估计不准确。比如,在训练TurboAE时,需要非常大的batch size(超过500)才能有效平均噪声影响。 接下来是Layer Normalization,由Jimmy Lei Ba等人在2016年提出。与BN不同,LN是对同一层内所有神经元的输出进行标准化,即对每个样本的所有特征进行归一化。这种方法不依赖于batch size的大小,因此在batch size较小或动态变化的情况下表现更好。LN在循环神经网络(RNN)Transformer模型中应用较多,比如在自然语言处理任务中,由于序列长度可变,使用LN可以更好地处理不同长度的输入。例如,DeepDR-Transformer模块在处理眼底图像分类任务时,可能使用了类似LN的结构来保持稳定性[^2]。 两者的主要区别在于归一化的维度不同。BN在batch维度特征维度上进行归一化,而LN是在特征维度层维度上进行。因此,BN的效果受batch size影响较大,而LN则不受此限制。此外,BN在训练推理时的行为不同,需要维护移动平均的均值方差,而LN在训练推理时计算方式一致,不需要额外参数。 适用场景方面,BN适合固定深度的模型较大的batch size,比如图像分类任务中的CNN。LN则适合变长序列或小batch size的情况,如NLP中的Transformer或RNN。此外,在强化学习或生成对抗网络(GAN)中,由于batch size可能不稳定,LN也更适合。 需要进一步验证的是,LN是否真的在Transformer中被广泛使用,以及BN在batch size较小时的具体表现。根据引用[1],TurboAE需要大batch size才能有效,这说明BN对batch size敏感,而LN可能更适合小batch场景。同时,引用[2]提到的DeepDR-Transformer使用了全局平均池化全连接层,可能未明确提到LN,但Transformer架构通常使用LN,如原始论文中的设计。 总结下来,BNLN的主要区别在于归一化的维度对batch size的依赖,适用场景则根据模型类型任务需求来选择。</think>### Batch Normalization vs Layer Normalization: 区别与适用场景 #### 1. **核心区别** - **Batch Normalization (BN)** 对每个神经元的输入按 **批次维度** 进行标准化。假设输入维度为 $[B, C, H, W]$(如CNN中的图像数据),BN会对每个通道(Channel)的所有样本、空间位置计算均值方差,公式为: $$ \mu_c = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W x_{b,c,h,w} \\ \sigma_c^2 = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W (x_{b,c,h,w} - \mu_c)^2 $$ 适用于 **固定输入结构** 的任务(如图像分类)。 - **Layer Normalization (LN)** 对每个样本的所有神经元输出按 **特征维度** 进行标准化。假设输入维度为 $[B, L, D]$(如Transformer中的序列数据),LN会对每个样本的所有位置特征计算均值方差: $$ \mu_b = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D x_{b,l,d} \\ \sigma_b^2 = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D (x_{b,l,d} - \mu_b)^2 $$ 适用于 **变长序列** 或 **小批量数据** 的场景(如NLP、强化学习)。 --- #### 2. **适用场景对比** | **特性** | **Batch Normalization** | **Layer Normalization** | |------------------------|--------------------------------------|--------------------------------------| | **数据依赖** | 依赖批次统计,需要较大batch size | 单样本统计,与batch size无关 | | **任务类型** | 图像处理(CNN)、固定输入长度的任务 | NLP(Transformer)、RNN、强化学习 | | **训练稳定性** | 对batch size敏感,小批次效果下降 | 对batch size鲁棒 | | **推理行为** | 使用移动平均统计量 | 直接计算当前样本统计量 | --- #### 3. **性能影响** - **BN的优势与局限** 在图像任务中显著加速收敛,但受限于batch size。例如,在TurboAE训练中,batch size需大于500才能有效平均噪声影响。 - **LN的优势与局限** 更适合动态输入或小batch场景。例如,Transformer通过LN处理变长序列,而DeepDR-Transformer在医学图像分类中可能依赖类似结构[^2]。 --- #### 4. **代码示例对比** ```python # Batch Normalization (PyTorch) import torch.nn as nn bn = nn.BatchNorm2d(num_features=64) # 用于CNN # Layer Normalization (PyTorch) ln = nn.LayerNorm(normalized_shape=512) # 用于Transformer ``` ---
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值