第一题: 1049. 最后一块石头的重量 II
这道题的思路是:将这组石头分成大小相近的两组,两组石头之差就是本题结果了。然后,就可以把这道题变成一道01背包问题,背包的容量就是本组石头总重量的一半(向下取整)。可以理解为,重量与价值是相同的,找出这个背包能放入石头最大价值。
代码如下:
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum = 0;
for(int i : stones) sum += i;
int bagWeight = sum / 2;
vector<int> dp(bagWeight + 1);
for(int i = 0; i < stones.size(); i++) {
for(int j = bagWeight; j >= stones[i]; j--) {
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
}
}
int littleGroup = dp[bagWeight];
int bigGroup = sum - littleGroup;
return bigGroup - littleGroup;
}
};
第二题: 494. 目标和
这道题我考虑到了回溯算法,将这道题转换成从nums数组中找出和为x的子集个数,代码如下所示:
class Solution {
public:
int sum = 0;
int result = 0;
void backtracking(vector<int>& nums, int x, int startIndex) {
if(sum == x) {
result++;
//return; //不能直接return,后面可能还有元素0
}
if(sum > x) return;
for(int i = startIndex; i < nums.size(); i++) {
sum += nums[i];
backtracking(nums, x, i + 1);
sum -= nums[i];
}
return;
}
int findTargetSumWays(vector<int>& nums, int target) {
int n = nums.size();
vector<int> dp(n + 1);
int sum_nums = 0;
for(int i : nums) sum_nums += i;
int tmp = sum_nums + target;
if(tmp % 2) return 0;
int x = tmp / 2;
//从数组nums中找出和为x的子数组,一共有多少个
backtracking(nums, x, 0);
return result;
}
};
回溯算法能够解决这道题,但算法复杂度较高,还可以使用动态规划的方法来解题。思路是:将数组元素分成两组,两组之和分别为left和right,其中left + right = sum; left - right = target。求出left和right,这样问题就转化成背包容量为left,从数组中能找出多少个恰好满足和为left的子集。这样就转化为一道01背包问题,背包容量为left,求恰好能装满背包的情况有多少种?
令dp[j]表示容量为j的背包,能装多少种不同下标的元素。只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法,然后累加起来就好了。初始化也有一个坑,dp[0]到底是0还是1呢?我们带入一下就好了,当数组为[0],并且target也为0时,此时bagSize也是0,但结果很明显是1,所以应当把dp[0]初始化为1。
代码如下:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int S) {
int sum = 0;
for (int i = 0; i < nums.size(); i++) sum += nums[i];
if (abs(S) > sum) return 0; // 此时没有方案
if ((S + sum) % 2 == 1) return 0; // 此时没有方案
int bagSize = (S + sum) / 2;
vector<int> dp(bagSize + 1, 0);
dp[0] = 1;
for (int i = 0; i < nums.size(); i++) {
for (int j = bagSize; j >= nums[i]; j--) {
dp[j] += dp[j - nums[i]];
}
}
return dp[bagSize];
}
};
第三题: 474.一和零
这道题得用三维数组来解题,先写出三维数组的方法有利于理解处理的过程。总体思路还是01背包问题。三维数组解法的代码如下所示:
class Solution {
public:
int getNums(string& s, char c) {
int result = 0;
for(char a : s) {
if(a == c) result++;
}
return result;
}
int findMaxForm(vector<string>& strs, int m, int n) {
int size = strs.size();
//dp[i][m][n]表示从前i个元素中选取时,含有m个0,n个1的最大子集数量
vector<vector<vector<int>>> dp(size + 1, vector<vector<int>> (m + 1, vector<int>(n + 1, 0)));
for(int i = 1; i < size + 1; i++) {
int zeros = getNums(strs[i-1], '0');
int ones = getNums(strs[i-1], '1');
for(int j = 0; j < m + 1; j++) {
for(int k = 0; k < n + 1; k++) {
dp[i][j][k] = dp[i-1][j][k];
if(j >= zeros && k >= ones) {
dp[i][j][k] = max(dp[i][j][k], 1 + dp[i-1][j-zeros][k-ones]);
}
}
}
}
return dp[size][m][n];
}
};
可以优化成二维数组的形式,代码如下:
class Solution {
public:
int getNums(string& s, char c) {
int result = 0;
for(char a : s) {
if(a == c) result++;
}
return result;
}
int findMaxForm(vector<string>& strs, int m, int n) {
int size = strs.size();
//dp[m][n]表示含有m个0,n个1的最大子集数量
vector<vector<int>> dp(m + 1, vector<int> (n + 1));
for(int i = 1; i < size + 1; i++) {
int zeros = getNums(strs[i-1], '0');
int ones = getNums(strs[i-1], '1');
for(int j = m; j >= zeros; j--) {
for(int k = n; k >= ones; k--) {
if(j >= zeros && k >= ones) {
dp[j][k] = max(dp[j][k], 1 + dp[j-zeros][k-ones]);
}
}
}
}
return dp[m][n];
}
};
Day43打卡!!!