第一题:139.单词拆分
这道题可以理解为一道完全背包问题,字符串s的大小是背包容量,单词就是对应的物品。(1)首先,确定dp数组下标及其含义,可以令dp[i]表示长度为i的字符串能否由给出的单词拼凑出来。
(2)递推公式的确定思路如下:可以截取一段字符串(假设字符串的范围是[begin, end]),那么如果s.substr(begin, end - begin + 1)存在于给定的单词中时,再判断dp[begin]是否为true,若是,那么就令dp[end]为true。
(3)所以,需要把dp[0]设置为true,其余设置为false;
(4)遍历顺序也有讲究,这道题相当于求排列的情况,因为给定的字符串s中的字母是有一定顺序排列的,因此需要先遍历背包,后遍历物品,这样才能得到正确的答案!
(5)打印dp数组就可以看出状态的转移情况。
代码如下:
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> st(wordDict.begin(), wordDict.end());
int n = s.size(); //背包容量
vector<bool> dp(n + 1, false);
dp[0] = true;
for(int j = 1; j <= n; j++) { //先遍历背包
for(int i = 0; i < j; i++) { //后遍历物品
string substr = s.substr(i, j - i);
if(st.find(substr) != st.end() && dp[i]) {
dp[j] = true;
}
}
}
return dp[n];
}
};
第二部分:关于多重背包,你该了解这些!
多重背包问题就是不同的物品数量不一样,物品对应一定的价值和重量,现在给定一个确定容量的背包,问这个背包能装下的最大价值是多少?
其实,多重背包可以转化为01背包问题来解决,比如说:有3个物品A(重量为1,价值为2),2个物品B(重量为3,价值为5),转化后,就相当于有五个物品,对应的重量分别是{1,1,1,3,3},对应的价值分别是{2,2,2,5,5}。然后按照01背包的思路解题就好了!
代码如下:
#include <iostream>
#include <vector>
using namespace std;
void test_multi_pack() {
vector<int> weight = {1, 3, 4};
vector<int> value = {15, 20, 30};
vector<int> nums = {2, 3, 2};
int bagWeight = 10;
for(int i = 0; i < nums.size(); i++) {
while(nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
weight.push_back(weight[i]);
value.push_back(value[i]);
nums[i]--;
}
}
vector<int> dp(bagWeight + 1, 0);
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
for(int j = 0; j <= bagWeight; j++) {
cout << dp[j] << " ";
}
cout << endl;
}
cout << dp[bagWeight] << endl;
}
int main() {
test_multi_pack();
}
Day46打卡!!!