多标签学习之数学语言版

数学语言是论文最强有力展现.

1. 数据模型

令属性矩阵为 X = ( x 1 , x 2 , … , x N ) T = ( x i j ) N × M \mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)^{\mathrm{T}} = (x_{ij})_{N \times M} X=(x1,x2,,xN)T=(xij)N×M, 其中 N N N M M M 分别为对象数与属性数. Y = ( y 1 , y 2 , … , y N ) T = ( y i j ) N × L \mathbf{Y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N)^{\mathrm{T}} = (y_{ij})_{N \times L} Y=(y1,y2,,yN)T=(yij)N×L, 其中 L L L 为标签数. 如果 y i j ∈ { 0 , 1 } y_{ij} \in \{0, 1\} yij{0,1}, 那么 y i j = 1 y_{ij} = 1 yij=1 表示 x i \mathbf{x}_i xi 具有标签 j j j, y i j = 0 y_{ij} = 0 yij=0 表示不具有. 如果 y i j ∈ { − 1 , 1 } y_{ij} \in \{-1, 1\} yij{1,1}, 那么 y i j = 1 y_{ij} = 1 yij=1 表示 x i \mathbf{x}_i xi 具有标签 j j j, y i j = − 1 y_{ij} = -1 yij=1 表示不具有. y i j y_{ij} yij 的值域根据算法的需求选择.

2. 线性模型

线性模型比较简单, 速度也快.

2.1 方案 1: 原始的线性模型

arg min ⁡ W ∈ R M × L ∥ X W − Y ∥ 2 2 (1) \argmin_{\mathbf{W} \in \mathbb{R}^{M \times L}} \| \mathbf{X} \mathbf{W} - \mathbf{Y}\|_2^2 \tag{1} WRM×LargminXWY22(1)
本方案使用一个系数矩阵 W = ( w 1 , w 2 , … , w L ) = ( w i j ) M × L \mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_L) = (w_{ij})_{M \times L} W=(w1,w2,,wL)=(wij)M×L 进行拟合. 注意 w i \mathbf{w}_i wi 为列向量, 有如下特点:

  • 使用了简单的线性模型;
  • i i i 个标签仅与 w i \mathbf{w}_i wi 相关, 没有考虑标签相关性.
  • 可以改变损失函数, 也可以增加正则项.

2.2 方案 2: 带共享矩阵的线性模型

arg min ⁡ W 0 ∈ R M × M ′ , W ∈ R M ′ × L ∥ X W 0 W − Y ∥ 2 2 (2) \argmin_{\mathbf{W}_0 \in \mathbb{R}^{M \times M'}, \mathbf{W} \in \mathbb{R}^{M' \times L}} \| \mathbf{X} \mathbf{W}_0 \mathbf{W} - \mathbf{Y}\|_2^2 \tag{2} W0RM×M,WRM×LargminXW0WY22(2)
本方案在 (1) 式基础上增加了共享矩阵 W 0 \mathbf{W}_0 W0, 它的作用是将原始 M M M 维空间数据映射到 M ′ M' M 维, 有如下特点:

  • 通常要求 M ′ ≪ M M' \ll M MM, 相当于降维的作用.
  • M ′ M' M 维空间被称为共享子空间, 即它被不同的标签共享, 以达到提取标签相关性的目的. 不得不说, 这和我们深度学习的方案想法一致啊! 我们的方案就不更多剧透啦, 哈哈.
  • 这个方案我从 [Sheng-Jun Huang, Songcan Chen, Zhi-Hua Zhou: Multi-Label Active Learning: Query Type Matters] 看到的, 暂时还不清楚是否原始出处.

3. 矩阵分解

3.1 问题的提出

在多标签应用中, 训练数据有很多的缺失标签, 即 y i j ∈ 0 , 1 , ? y_{ij} \in {0, 1, ?} yij0,1,? (其中问号表示缺失) 或 y i j ∈ − 1 , 0 , 1 y_{ij} \in {-1, 0, 1} yij1,0,1 (其中 0 表示缺失).

3.2 基于矩阵分解的标签填充

U ∈ R N × K \mathbf{U} \in \mathbb{R}^{N \times K} URN×K V ∈ R L × K \mathbf{V} \in \mathbb{R}^{L \times K} VRL×K 为两个子空间, 希望以它们拟合 Y \mathbf{Y} Y 中非零部分,
arg min ⁡ U , V ∑ y i j ≠ 0 ( u i v j T − y i j ) 2 (3) \argmin_{\mathbf{U}, \mathbf{V}} \sum_{y_{ij \neq 0}} (\mathbf{u}_i \mathbf{v}_j^{\mathrm{T}} - y_{ij})^2 \tag{3} U,Vargminyij=0(uivjTyij)2(3)
同上, 可以加上正则项.


未完待续

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值