学术报告
文章平均质量分 79
代替学术报告 PPT
闵帆
机器学习算法 Java 程序员
展开
-
学术讲座: 如何把科研变成兴趣 (程序猿专场)
摘要: 科研是研究生和高校教师分内之事. 有些人做起来痛苦, 有些人做起来快乐, 还有些人做起来痛快. 本讲座讨论科研过程中如何培养学习能力、创新能力、表达能力、社交能力等. 从一些师生的案例出发, 分享如何把让人头秃的科研工作变成令人着迷的个人兴趣.原创 2022-09-08 08:40:49 · 551 阅读 · 5 评论 -
机器学习训练与参数优化的一般过程 (讨论)
摘要: 在实际机器学习应用中, 不但要进行模型的训练, 还要进行输入参数的控制. 本文描述了一般性的过程, 仅供参考.原创 2022-07-03 06:19:34 · 539 阅读 · 0 评论 -
学术讲座: 多标签主动学习之 MASP
摘要: 介绍最新录用的论文 MASP.原创 2022-06-09 15:44:28 · 672 阅读 · 8 评论 -
多标签学习之讲座版 (内部讨论, 未完待续)
摘要: 多标签学习是一种常见的, 而并非小众的机器学习问题.原创 2022-05-29 11:10:45 · 620 阅读 · 2 评论 -
学术报告: 三分模式挖掘
频繁序列模式挖掘广泛应用于时序、文本、基因工程等领域. 与模式匹配不同, 模式挖掘需要进行模式的构造, 因此更具有挑战性. 本讲座描述该领域的一个具体方向的发展历程, 以及与粒计算的关系. 带周期性通配符区间的模式对应于一定程度的模糊匹配; 将通配符区间扩展为弱通配符区间使得我们关注重要的字符或变化, 而忽略不重要的字符或变化; 三分字母表字母分成强、中、弱三个部分, 使得中间的字符即可以被关注,也可以被忽略; 多变量三分模式则应对多个变量的序列. 这个历程中的模式逐渐泛化, 且都有其适用范围.原创 2021-12-09 22:46:15 · 792 阅读 · 0 评论 -
学术报告: 机器学习的常用招数
摘要: 传统计算机程序将人类的知识直接教给机器, 通常可以解决一些确定性的问题; 机器学习则模拟人类的学习方式, 从数据中总结出规律, 常用于解决现实中更为广泛存在的不确定性问题. 本讲座介绍惰性学习、决策树、支持向量机、BP神经网络、深度学习等常用方法, 并讨论这些方法的具体应用如植物分类、手写字识别、目标检测.1. 确定性与不确定性问题1.1 确定性问题动机: 科学计算 (π\piπ)、信息管理解决方案: 将规则写成程序例 1: 工资的计算例 2: 闰年的判断 查看完整代码 if (原创 2021-11-25 08:37:51 · 901 阅读 · 0 评论 -
学术报告: 三支推荐系统
摘要:三支决策理论与方法已被广泛应用于机器学习的各类实际场景。本报告利用三支决策的思想,将推荐行为划分为推荐、不推荐、促销三种。在随机森林、Slope-one、kNN等流行算法进行预测的基础上,详细讨论两个推荐阈值的学习方案。实验表明推荐阈值的有效性与推荐算法的先进性。进一步提出了交互式环境下的三支推荐算法,也获得了好的效果。原创 2021-11-23 12:13:39 · 1738 阅读 · 0 评论 -
机器,你究竟学了些啥?(讨论式讲座)
机器学习、深度学习、监督学习、无监督学习、半监督学习、强化学习、逆强化学习、主动学习、归纳学习、传导性学习、直推学习、集成学习、增量学习、减量学习、积极学习、堕性学习、规则学习、元学习、联邦学习、度量学习、迁移学习、PU学习、在线学习、离线学习、多任务学习、多视图学习、多示例学习、多标签学习、标签分布学习、小样本学习、零样本学习、自监督学习、表示学习、对偶学习、字典学习、对比学习、宽度学习、自步学习、对等学习、持续学习、概念学习、偏好学习、预测学习、稀疏学习、PAC学习、流行学习、剩余学习、因果学习、自动化原创 2021-10-28 17:44:32 · 410 阅读 · 2 评论 -
启发式概念构建及推荐应用 (NCIIP 2021 报告)
启发式概念构建及推荐应用NCIIP 2022 FCA&GrC论坛报告 7**摘要**: 形式概念分析作为一种建立于二元关系的完备数学工具,在揭示电子商务中用户和商品之间的内在联系时,具有天然的可解释性。然而,构造概念格涉及很高的时间和空间复杂度,致使形式概念分析无法适用于电子商务中的大规模数据。同时,概念格中并非所有概念都是推荐必须的,在实际过程中,通常只会用到部分格或概念集。针对上述问题,我们提出了用概念集合代替概念格,研究了概念集合的生成算法,以及基于概念集合的推荐应用。在概念生成的启发式信原创 2021-10-21 22:41:00 · 619 阅读 · 0 评论 -
主动学习: 从三支决策到代价敏感
摘要:主动学习通过人机交互,使用更少的标签获得良好的分类能力。代价敏感主动学习则旨在获得标签查询代价、误分类代价之间良好的折衷。三支主动学习方法使用聚类算法,将样本分为查询、分类、待处理三个区域,并在交互过程中不断减少待处理区域数据量,最终获得分类结果。内容准备中,敬请期待!–...原创 2021-09-22 17:51:41 · 644 阅读 · 0 评论 -
主动学习:从人类到机器
学习是一个耗时耗力、充满艰辛的过程。学习也是获取大量知识、迅速站到巨人肩膀上的唯一途径。从被动学习转向主动学习,是人类与机器共同面临的问题。本讲座分析两者的联系与区别,为提高学习效率和质量提供一定的指导。1. 什么是学习人类的学习:是指通过阅读、听讲、思考、研究、实践等途径获得知识或技能的过程。机器的学习:是指机器从(大量)训练样本中总结出规律的过程。共同点:建立模型:变成自己的知识耗时耗力:反复训练、长期的过程图 1. 决策树模型图 2. 回归模型图 3. BP 神经网络图 4.原创 2021-09-19 07:37:19 · 324 阅读 · 2 评论 -
2021 新生寄语
1. 为什么学习高考的目的是进大学,然后呢?1.1 学习的基本目的掌握谋生技能演艺圈与技术圈,家长希望孩子进哪个?体育界与科研界,家长希望孩子进哪个?实现各种自由财务自由:一无所有()择偶自由:不知妻美()择业自由:悔创阿里()环境自由:普通家庭()展现人生价值刷存在感1.2 长远理想与近期计划先树立远大理想,还是落足到近期计划?个人定位:你是万里挑一的天纵英才吗?1.3 什么是求学被老师和家长逼着学,还是自己要求学大学生应该为自己负责家长这原创 2021-09-07 00:34:54 · 556 阅读 · 4 评论