计算机数学基础
文章平均质量分 88
闵帆
机器学习算法 Java 程序员
展开
-
机器学习几种常见凸函数的证明
摘要: 证明几种常见的凸函数.原创 2022-08-24 00:08:18 · 2394 阅读 · 4 评论 -
sigmoid 与 normal distribution 结合的一道数学题
摘要: 一道数学题, 未完全解出. 仅供讨论.原创 2022-05-12 12:27:00 · 330 阅读 · 0 评论 -
一个马尔科夫题 (有一定进展)
数轴上 1 的位置一个点 A, 可左右随机游动. 每次游动距离为 1, 往左游动的概率是 1/3, 往右游动的概率是 2/3; 0是吸收壁 (游动到 0 就是结束).问题:(1) 点 A 能游动 nnn 步的概率 (推导一下关于 nnn 的公式, n≥1n \geq 1n≥1);(2) 游动 nnn 步的条件下, 游动位移总和的(条件)分布.解:记点 A 在数轴上游动的序列为 M=m1…mnM = m_1 \dots m_nM=m1…mn, 其中 mi∈{L,R}m_i \in \{\math原创 2022-03-28 17:34:17 · 908 阅读 · 0 评论 -
逻辑悖论的几个层次
深入分析一个经典的逻辑悖论。原创 2022-02-25 11:11:31 · 1096 阅读 · 7 评论 -
一桩婚姻引发的数学建模
0. 小段子一则一位美女因为生意困难,没有收入,于是把房子卖了。买房子的恰好是一位男士,经过讨价还价,终于成交了。不可思议的是,两人后来好上了,居然领了结婚证。美女窃喜:“房子卖出去了,钱也到手了,房子还是我住着,还白捡了一个老公伺候自己。”男士也高兴:“没想到买个房子,还送一老婆,而且钱还在家里。”请问:谁赚了?为什么?1. 基本模型本问题涉及人员、财产。令人的集合为 X={x1,…,xn}\mathbf{X} = \{x_1, \dots, x_n\}X={x1,…,xn},财产的集合为原创 2020-10-19 16:41:19 · 1204 阅读 · 0 评论 -
机器学习数学基础: 数据生成器与学习器的关系
我在接触机器学习的过程中, 被一些学习器所洗脑, 如 kkkNN, 决策树, Naive Bayes (NB), Supoort vector machines (SVM), Back-propagation artificial neural networks (BP-ANN), Matrix factorization (MF). 学习器的评价指标往往是分类精度 (accuracy)、回归误差 (mean absolute error, MAE; root mean squared error, RMS原创 2021-07-21 06:48:22 · 1931 阅读 · 0 评论 -
机器学习的数学基础 5: 数据集的混合表示法
数据集是机器学习的基础. 有两种基本的表示方式.1. 纯集合表示数据集为 X={x1,…,xn}\mathbf{X} = \{x_1, \dots, x_n\}X={x1,…,xn}, 属性集为 A={a1,…,am}\mathbf{A} = \{a_1, \dots, a_m\}A={a1,…,am}. 第 iii 个实例的第 jjj 个属性值表示为 v(xi,aj)v(x_i, a_j)v(xi,aj). 为了省掉一个符号vvv, 也可以认为每个属性都是一个函数, 这样, 第 iii 个原创 2021-07-17 20:09:02 · 2241 阅读 · 0 评论 -
回归问题的评价指标
在机器学习中, 令输入为 X=(x1,x2,…,xn)T∈Rn×m\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)^{\mathrm{T}} \in \mathcal{R}^{n \times m}X=(x1,x2,…,xn)T∈Rn×m, 输出 (标签) 为 Y=(y1,y2,…,yn)T∈Rn\mathbf{Y} = (y_1, y_2, \dots, y_n)^{\mathrm{T}} \in \mathcal{R}^n原创 2021-06-24 16:17:18 · 188 阅读 · 2 评论 -
kNN 的数学表达式
kNN 是机器学习的基础算法. 程序容易写, 但要用数学式子来表达, 却有一定难度. 今天我们就来杠一下吧.1. 基本符号Table 1. Notations.符号涵义U={x1,…,xn}\mathbf{U} = \{x_1, \dots, x_n\}U={x1,…,xn}样本集δij=δ(xi,xj)\delta_{ij} = \delta(x_i, x_j)δij=δ(xi,xj)xix_ixi 与 xjx_jxj 的距离δB(xi,xj)\de原创 2021-06-03 19:47:34 · 947 阅读 · 4 评论 -
机器学习的数学基础4:二叉树定义的 N 个版本
二叉树的定义有一定的难度,本贴详细描述如何逐步获得完美的版本。1. 基本描述性定义在《数据结构》中,对二叉树的定义是描述性的。Definition 1. A set of nodes form a binary tree if it is empty (no node) or:a) Any node has at most one left child and one right child. A node is called the parent of its left or right chil原创 2021-05-21 15:20:08 · 392 阅读 · 0 评论 -
机器学习的数学基础3:有限状态自动机
目录机器学习的数学基础1:集合、关系、元组机器学习的数学基础2:字母表、二叉树、树上一节直接使用了有限状态自动机, 所以这里还是有必要把基础补一下. 《形式语言与自动机理论》是计算思维的核心, 完全绕不开!1. 二叉树的自动机描述确定的有穷状态自动机定义如下:A deterministic finite state automata (DFA) is a 5-tuple M=(Σ,Q,q0,T,f)M = (\Sigma, \bm{Q}, \bm{q}_0, \bm{T}, f)M=(Σ,原创 2021-05-10 08:15:39 · 636 阅读 · 0 评论 -
机器学习的数学基础2:字母表、二叉树、树
目录机器学习的数学基础1:集合、关系、元组用元组来定义树与二叉树时, 遇到了诸多问题, 所以在这里单独写成一个贴子.按上一贴的习题 7.a) 二叉树的左、右子树需要区别对待, 所以, 定义子节点函数更合理. 有两种方法: 1) 使用两个函数; 2) 使用一个函数, 但将子树类型写成一个字符类型的参数 (取值为 l 或 r), 其取值范围为一个字母表. 后一种方案由 彭子峰 同学提出.b) 要想说明子树的子树, 需要处理 lrrl 这类的字符串. 这涉及到字母表的正闭包.c) 叶节点的子树原创 2021-05-10 07:35:17 · 608 阅读 · 0 评论 -
扭倒费赌局问题
A 与 B 通过掷硬币对赌。假设硬币正反概率均为 0.5, 正面则 A 胜,反面则 B 胜。A 比较强势,制定规则如下:每一轮开始时筹码为 1 元钱,如果 A 第一局赢,则本轮结束,A 赚 1 元钱。否则筹码加为 2 元钱,如果 A 赢,本轮结束,A 还是赚 1 元钱。否则筹码加为 4 元钱,以此类推。问:这个赌局是否公平?A 可以通过这种方式把 B 的钱赢光吗?提示:有可能分情况,即 A 的钱有限与 A 的钱无限。...原创 2020-12-30 14:15:47 · 1746 阅读 · 3 评论 -
机器学习的数学基础1:集合、关系、元组
本贴描述离散数学的一些入门级概念, 以及使用过程中容易遇到的坑.1. 集合1.1 朴素的定义Definition 1. A set is a collection of elements, and an element is an object in a set.集合有两种基本的表示法:列举法如:A={0,1,2,3,4,5,6,7,8,9}\mathbf{A} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}A={0,1,2,3,4,5,6,7,8,9} 是阿拉伯数字的原创 2021-04-29 00:41:33 · 2424 阅读 · 3 评论