《机器学习实战》笔记之五——Logistic回归

第五章 Logistic回归

回归:对一些数据点,算法训练出直线参数,得到最佳拟合直线,能够对这些点很好的拟合。

训练分类器主要是寻找最佳拟合参数,故为最优化算法。

5.1 基于Logistic回归和sigmoid函数的分类

实现Logistic回归分类器:在每个特征上都乘以一个回归系数,然后把所有的结果值相加,总和带入sigmoid函数,其结果大于0.5分为第0类,结果小于0.5分为第0类。

sigmoid函数公式:

Figure 5-1: sigmoid函数公式


Figure 5-2: sigmoid曲线

sigmoid函数具有很好的性质,如其导数可以用其本身表示等等。

5.2 基于最优化方法的最佳回归系数确定

sigmoid函数输入z:

其可以写成z=w.T*x,向量x为分类器的输入数据, w为训练器寻找的最佳参数。

梯度上升法:

思想:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。

函数f(x,y)的梯度:

沿x的方向移动,沿y的方向移动,最后能够到达最优点,但是f(x,y)在待计算点需要有定义并且可微。

梯度算子总是指向函数值增长最快的方向。移动方向为梯度方向,移动量大小需要乘以一个参数,称之为步长。参数迭代公式为:

公式可一直执行,直到某个条件停止为止。如迭代次数或者算法达到某个可以允许的误差范围。

训练算法:使用梯度上升找到最佳参数

梯度上升法伪代码:

数据点:

算法:

[python]  view plain  copy
  1. def loadDataSet():  
  2.     dataMat  = []  
  3.     labelMat = []  
  4.     fr = open("testSet.txt")  
  5.     for line in fr.readlines():  
  6.         lineArr = line.strip().split("\t")  
  7.         dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #对应三个参数,第一个对应着常熟  
  8.         labelMat.append(int(lineArr[2]))  
  9.     return dataMat, labelMat  
  10.   
  11. def sigmoid(inX):  
  12.     return 1.0/(1+exp(-inX))  
  13.       
  14. def gradAscent(dataMatIn, classLabels):  
  15.     '''''Logistic回归梯度上升优化算法'''  
  16.     dataMatrix = mat(dataMatIn)                         #100行3列  
  17.     labelMat   = mat(classLabels).transpose()           #transpose()将1行100列的矩阵转为100行1列mat(classLabels).T也可破  
  18.     m,n        = shape(dataMatrix)                      #m=100,n=3  
  19.     alpha      = 0.001  
  20.     maxCycles  = 500  
  21.     weights    = ones((n,1))                            #100行1列  
  22.     for k in range(maxCycles):  
  23.         h       = sigmoid(dataMatrix*weights)           #dataMatrix*weights,100×3和3×1的矩阵相乘,得到100×1的矩阵  
  24.         error   = (labelMat - h)  
  25.         weights = weights + alpha*dataMatrix.transpose()*error  
  26.     return weights  
  27. dataMat, labelMat = loadDataSet()  
  28. weights = gradAscent(dataMat, labelMat)  
  29. print weights     

Figure5-4: 算法参数

分析数据:画出决策边界

上一步确定了回归系数,确定了不同类别数据之间的分割线。这一步画出分割线:

[python]  view plain  copy
  1. def plotBestFit(weights):  
  2.     dataMat, labelMat = loadDataSet()  
  3.     dataArr           = array(dataMat)              #将每个数据点的x,y坐标存为矩阵的形式  
  4.     n                 = shape(dataArr)[0]           #取其行数,也即数据点的个数  
  5.     #======画数据点  
  6.     xcord1 = []  
  7.     ycord1 = []      
  8.     xcord2 = []  
  9.     ycord2 = []  
  10.     for i in range(n):  
  11.         if int(labelMat[i]) == 1:                   #若是正例,存到(x1,y1)中  
  12.             xcord1.append(dataArr[i,1])  
  13.             ycord1.append(dataArr[i,2])  
  14.         else:  
  15.             xcord2.append(dataArr[i,1])  
  16.             ycord2.append(dataArr[i,2])  
  17.     fig = plt.figure()  
  18.     ax  = fig.add_subplot(111)  
  19.     ax.scatter(xcord1,ycord1,s=30,c="red",marker = "s")  
  20.     ax.scatter(xcord2,ycord2,s=30,c="green")  
  21.     #============  
  22.     x = arange(-3.0,3.0,0.1)                    #x为numpy.arange格式,并且以0.1为步长从-3.0到3.0切分。  
  23.     #拟合曲线为0 = w0*x0+w1*x1+w2*x2, 故x2 = (-w0*x0-w1*x1)/w2, x0为1,x1为x, x2为y,故有  
  24.     y = (-weights[0] - weights[1]*x)/weights[2]   
  25.     #x为array格式,weights为matrix格式,故需要调用getA()方法,其将matrix()格式矩阵转为array()格式  
  26.     ax.plot(x,y)  
  27.     plt.xlabel("X1")  
  28.     plt.ylabel("X2")  
  29.     plt.show()  
  30. dataMat, labelMat = loadDataSet()  
  31. weights = gradAscent(dataMat, labelMat)  
  32. #getA()方法,其将matrix()格式矩阵转为array()格式,type(weights),type(weights.getA())可观察到。  
  33. plotBestFit(weights.getA())  

Figure 5-5: 分割线

训练算法:随机梯度上升

梯度上升算法中,每次更新回归系数需要遍历整个数据集。数据量若是大了,计算复杂度较高。

改进方法:一次仅用一个样本点更新回归系数,这便是随机梯度上升算法。

伪代码:

代码:

[python]  view plain  copy
  1. def stocGradAscent0(dataMatrix, classLabels):  
  2.     '''''随机梯度上升算法'''  
  3.     m,n     = shape(dataMatrix)  
  4.     alpha   = 0.01  
  5.     weights = ones(n)  
  6.     for i in range(m):  
  7.         h       = sigmoid(sum(dataMatrix[i]*weights))           #此处h为具体数值  
  8.         error   = classLabels[i] - h                            #error也为具体数值  
  9.         weights = weights + alpha*error*dataMatrix[i]           #每次对一个样本进行处理,更新权值  
  10.     return weights  
  11. dataArr, labelMat = loadDataSet()  
  12. weights = stocGradAscent0(array(dataArr), labelMat)  
  13. plotBestFit(weights)  

Figure 5-6: 随机梯度上升算法分割线

结果显示其效果还不如梯度上升算法,不过不一样,梯度上升算法,500次迭代每次都用上了所有数据,而随机梯度上升算法总共也只用了500次。需要对其进行改进:

[python]  view plain  copy
  1. def stocGradAscent1(dataMatrix, classLabels, numIter=150):  
  2.     '''''改进的随机梯度上升算法,收敛得更快'''  
  3.     m,n = shape(dataMatrix)  
  4.     weights = ones(n)  
  5.       
  6.     for j in range(numIter):  
  7.         dataIndex = range(m)  
  8.         for i in range(m):  
  9.             alpha = 4/(1.0+i+j)+0.0001                #alpha迭代次数不断变小,1.非严格下降,2.不会到0  
  10.             #随机选取样本更新系数weights,每次随机从列表中选取一个值,用过后删除它再进行下一次迭代              
  11.             randIndex = int(random.uniform(0, len(dataIndex)))#每次迭代改变dataIndex,而m是不变的,故不用unifor(0, m)  
  12.             h = sigmoid(sum(dataMatrix[randIndex]*weights))  
  13.             error = classLabels[randIndex] - h  
  14.             weights = weights + alpha*error*dataMatrix[randIndex]  
  15.             del(dataIndex[randIndex])  
  16.     return weights  
  17.   
  18. dataArr, labelMat = loadDataSet()  
  19. weights = stocGradAscent1(array(dataArr), labelMat)  
  20. plotBestFit(weights)  

Figure 5-7: 改进的随机梯度上升算法分割线

5.3 示例:从疝气病症预测病马的死亡率

准备数据:处理数据中的缺失值

可选做法:

  • 使用可用特征的均值来填补缺失值
  • 使用特殊值来填补缺失值,如-1
  • 忽略有缺失值的样本
  • 使用相似样本的均值添补缺失值
  • 使用另外的机器学习算法预测缺失值

数据挖掘软件clementine几乎可以做以上数据预处理的工作。可破有问题的数据。

数据:


Figure 5-8: train data


Figure 5-9: test data

测试算法:用Logistic回归进行分类

[html]  view plain  copy
  1. def colicTest():  
  2.     frTrain              = open("horseColicTraining.txt")  
  3.     frTest                = open("horseColicTest.txt")  
  4.     #==========训练数据准备  
  5.     trainingSet       = []  
  6.     trainingLabels = []  
  7.     for line in frTrain.readlines():  
  8.         currLine = line.strip().split("\t")  
  9.         lineArr   = []  
  10.         for i in range(21):  
  11.             lineArr.append(float(currLine[i]))  
  12.         trainingSet.append(lineArr)  
  13.         trainingLabels.append(float(currLine[21]))  
  14.     #==========  
  15.     trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500) #进行500次迭代,计算权重  
  16.     errorCount = 0  
  17.     numTestVec = 0.0  
  18.     #========准备测试集并进行测试计算错误率  
  19.     for line in frTest.readlines():  
  20.         numTestVec +=1.0  
  21.         currLine = line.strip().split("\t")  
  22.         lineArr   = []  
  23.         for i in range(21):  
  24.             lineArr.append(float(currLine[i]))  
  25.         if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):  
  26.             errorCount +=1  
  27.     errorRate = (float(errorCount)/numTestVec)  
  28.     #=======  
  29.     print "the error rate of this test is: %f" % errorRate  
  30.     return errorRate  
  31.   
  32. def multiTest():                        #多次测试  
  33.     numTests = 10  
  34.     errorSum = 0.0  
  35.     for k in range(numTests):  
  36.         errorSum += colicTest()  
  37.     print "after %s iterations the average error rate is: %f " % (numTests, errorSum/float(numTests))  

Figure 5-10: 测试结果


5.4 小结

Logistic回归:

优点: 计算代价不高,易于理解和实现。

缺点: 容易欠拟合,分类精度可能不高。

适用数据类型:数值型和标称型数据。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值