任务安排
1、机器学习导论 8、核方法
2、KNN及其实现 9、稀疏表示
3、K-means聚类 10、高斯混合模型
4、主成分分析 11、嵌入学习
5、线性判别分析 12、强化学习
6、贝叶斯方法 13、PageRank
7、逻辑回归 14、深度学习
逻辑回归(LR)
Ⅰ 最大似然估计
后面的线性回归及逻辑回归均会用到最大似然估计,这里提前讲解,方便后续使用
似然函数:
设 X X X 为离散随机变量, θ = ( θ 1 , . . . , θ k ) θ=(θ_1,...,θ_k) θ=(θ1,...,θk) 为待估计的多维参数向量,若随机变量 x 1 , . . . , x n x_1,...,x_n x1,...,xn 相互独立且与 X X X 同分布,
记 P ( X i = x i ) = p ( x i ; θ ) P(X_i=x_i)=p(x_i;θ) P(Xi=xi)=p(xi;θ),则 P ( X 1 = x 1 , . . . , X n = x n ) = ∏ i = 1 n P ( X i = x i ) = ∏ i = 1 n p ( x i ; θ ) P(X_1=x_1,...,X_n=x_n)=∏^n_{i=1}P(X_i=x_i)=∏^n_{i=1}p(x_i;θ) P(X1=x1,...,Xn=xn)=i=1∏nP(Xi=xi)=i=1∏np(xi;θ) 称 L ( θ ) = ∏ i = 1 n p ( x i ; θ ) L(θ)=∏^n_{i=1}p(x_i;θ) L(θ)=∏i=1np(xi;θ) 为似然函数(Likelihood function)
最大似然估计算法:
①写出似然函数: L ( θ 1 , . . . , θ k ) = L ( x 1 , . . . , x n ; θ 1 , . . . , θ k ) = ∏ i = 1 n f ( x i ; θ 1 , . . . , θ k ) L(θ_1,...,θ_k)=L(x_1,...,x_n;θ_1,...,θ_k)=∏^n_{i=1}f(x_i;θ_1,...,θ_k) L(θ1,...,θk)=L(x1,...,xn;θ1,...,θk)=i=1∏nf(xi;θ1,...,θk) n n n 为样本数量,似然函数表示 n n n 个样本(事件)同时发生的概率
②对似然函数取对数: ln L ( θ 1 , . . . , θ k ) = ∑ i = 1 n ln f ( x i ; θ 1 , . . . , θ k ) \ln L(θ_1,...,θ_k)=∑^n_{i=1}\ln f(x_i;θ_1,...,θ_k) lnL(θ1,...,θk)=i=1∑nlnf(xi;θ1,...,θk) ③将对数似然函数对各参数求偏导并令其为0,得到对数似然方程组
④求解方程组得到各个参数
Ⅱ 线性回归(Linear Regression)
模型介绍
回归分析目的: 设法找出变量间的关联/依存(数量)关系,用函数关系式表达
①一元线性回归: y i = a + b x i + e i y_i=a+bx_i+e_i yi=a+bxi+ei
其中:
a a a 是截距
b b b 是回归系数(回归直线的斜率)
e i e_i ei 是残差/损失(服从高斯分布)
②多元线性回归: y i = b 0 + b 1 x 1 i + … + b n x n i + e i y_i=b_0+b_1x_{1i}+…+b_nx_{ni}+e_i yi=b0+b1x1i+…+bnxni+ei
其中:
b 0 b_0 b0 是常数项,是各变量都等于0时,因变量的估计值,也称本底值
b i b_i bi 是偏回归系数,其统计学意义是在其他所有自变量不变的情况下,某一自变量每变化一个单位,因变量平均变化的单位数
★目标函数
①目标函数求解
线性回归假设特征和结果满足线性关系,得到预测模型(几何意义是一个拟合平面) h θ ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + … … = ∑ i = 1 n θ i x i = h θ ( x )