410. 分割数组的最大值
380. 常数时间插入、删除和获取随机元素
设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构。
insert(val):当元素 val 不存在时,向集合中插入该项。
remove(val):元素 val 存在时,从集合中移除该项。
getRandom:随机返回现有集合中的一项。每个元素应该有相同的概率被返回。
示例 :
// 初始化一个空的集合。
RandomizedSet randomSet = new RandomizedSet();
// 向集合中插入 1 。返回 true 表示 1 被成功地插入。
randomSet.insert(1);
// 返回 false ,表示集合中不存在 2 。
randomSet.remove(2);
// 向集合中插入 2 。返回 true 。集合现在包含 [1,2] 。
randomSet.insert(2);
// getRandom 应随机返回 1 或 2 。
randomSet.getRandom();
// 从集合中移除 1 ,返回 true 。集合现在包含 [2] 。
randomSet.remove(1);
// 2 已在集合中,所以返回 false 。
randomSet.insert(2);
// 由于 2 是集合中唯一的数字,getRandom 总是返回 2 。
randomSet.getRandom();
解题思路:使用列表存储元素值,使用字典存储元素值及其在列表中的索引。重点关注删除操作:先将要删除的val对应的索引值赋给列表中最后一个元素,接下来对列表中两个元素进行交换,最后在列表和字典中分别移除val即可。
class RandomizedSet(object):
def __init__(self):
"""
Initialize your data structure here.
"""
self.values = []
self.index = {}
def insert(self, val):
"""
Inserts a value to the set. Returns true if the set did not already contain the specified element.
:type val: int
:rtype: bool
"""
if val in self.index:
return False
self.values.append(val)
self.index[val] = len(self.values)-1
return True
def remove(self, val):
"""
Removes a value from the set. Returns true if the set contained the specified element.
:type val: int
:rtype: bool
"""
if val not in self.index:
return False
self.index[self.values[-1]] = self.index[val]
self.values[-1],self.values[self.index[val]] = self.values[self.index[val]],self.values[-1]
self.values.pop()
self.index.pop(val)
return True
def getRandom(self):
"""
Get a random element from the set.
:rtype: int
"""
return self.values[random.randint(0,len(self.values)-1)]
# Your RandomizedSet object will be instantiated and called as such:
# obj = RandomizedSet()
# param_1 = obj.insert(val)
# param_2 = obj.remove(val)
# param_3 = obj.getRandom()
863. 二叉树中所有距离为 K 的结点
554. 砖墙
题:画一条自顶向下的、穿过最少砖块的垂线。
法:这题极端情况,一条垂线穿过最多砖块的数目就是,整个砖墙的行数len(walls)。那么我们对每个位置都 建立index与砖块边缘数目的关系。比如题目中给的例子:行数=len(walls)=6,列数=6,对于index=0和index=6是整个砖墙的边缘,不考虑。对于index=1时,在该位置结束的砖块数有3个,index=2时,在该位置结束的砖块数仅有1个,index=3时,在该位置结束的砖块数有3个,index=4时,在该位置结束的砖块数有4个,是最多的情况,所以len(walls)-4,就是本题的答案。
注意:记录index与数目关系时,我一开始考虑用list,初始化list中每个元素为0,但发现没有用字典好,字典可以不初始化,对每个dict[key]自增1时,如果该key原来没有值,就返回0。
def leastBricks(self, wall):
"""
:type wall: List[List[int]]
:rtype: int
"""
mark={}
for x in wall:
tmp=0
for i in range(len(x)-1):
tmp+=x[i]
mark[tmp]=mark.get(tmp,0)+1
print(mark)
if not mark:return len(wall)
return len(wall)-max(mark.values())
108. 将有序数组转换为二叉搜索树
6. Z 字形变换
将一个给定字符串根据给定的行数,以从上往下、从左到右进行 Z 字形排列。
比如输入字符串为 “LEETCODEISHIRING” 行数为 3 时,排列如下:
class Solution:
def convert(self, s: str, numRows: int) -> str:
if s == "" or numRows == 1 :
return s
temp = ["" for _ in range(numRows)]
flag = -1
i = 0
for c in s:
temp[i] += c
if i == 0 or i==numRows-1:
flag = -flag
i = i + flag
return "".join(temp)
528. 按权重随机选择
1044. 最长重复子串
补充题22. IP地址与整数的转换
876. 链表的中间结点
剑指 Offer 35. 复杂链表的复制
先用哈希表生成每个节点对应的新的节点,然后从头遍历原链表,根据next,random指针给新的链表设置next,random值。
class Solution:
def copyRandomList(self, head: 'Node') -> 'Node':
if not head:
return
dic={}
cur=head
while cur:
dic[cur]=Node(cur.val)
cur=cur.next
cur=head
while cur:
dic[cur].next=dic.get(cur.next)
dic[cur].random=dic.get(cur.random)
cur=cur.next
return dic[head]
130. 被围绕的区域
给定一个二维的矩阵,包含 ‘X’ 和 ‘O’(字母 O)。
找到所有被 ‘X’ 围绕的区域,并将这些区域里所有的 ‘O’ 用 ‘X’ 填充。
示例:
X X X X
X O O X
X X O X
X O X X
运行你的函数后,矩阵变为:
X X X X
X X X X
X X X X
X O X X
解释:
被围绕的区间不会存在于边界上,换句话说,任何边界上的 ‘O’ 都不会被填充为 ‘X’。 任何不在边界上,或不与边界上的 ‘O’ 相连的 ‘O’ 最终都会被填充为 ‘X’。如果两个元素在水平或垂直方向相邻,则称它们是“相连”的。
解题思路
思路:DFS、BFS
首先先看题目,给定的二维矩阵中,包含 ‘X’ 和 ‘O’(字母 O)。再看解释部分,任何边界上的 ‘O’ 不会被填充为 ‘X’,那么现在也就是说,其实有三个部分:
可形成包围的 ‘X’;
被 ‘X’ 包围的 ‘O’;
未被 ‘X’ 包围的 ‘O’。
现在题目的要求是将被包围的 ‘O’,转变为 ‘X’。前面也说了,未被包围的 ‘O’,是处于边界上的,同时侧面说明与边界 ‘O’ 相连的 ‘O’ 又不会被 ‘X’ 填充。
那么我们可以根据这个性质,我们考虑从边界开始扩散,先去标记不能被填充的 ‘O’,也就是与边界 ‘O’ 相连的部分,那么剩下的 ‘O’ 则会被包围转变为 ‘X’。具体的做法如下:
以边界的 ‘O’ 为起点,标记与之相连或者间接相连的字母 ‘O’;
当标记完上面部分的 ‘O’,此时开始遍历矩阵,去判断每个字母(注意:标记的为不会被替换的部分):
如果该字母是被标记的部分,那么将其重新转换为 ‘O’;
如果该字母是未被标记的部门,那么将其转换为 ‘X’。
注意:题目要求的是原地修改,那么我们标记的时候,将与边界 ‘O’ 相连的部分(包括边界 ‘O’),标记为 ‘M’。
我们现在使用深度优先搜索(DFS)和广度优先搜索(BFS)的方法来解决这个问题。具体的代码如下。
#深度优先搜索(DFS)
class Solution:
def solve(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
if not board or len(board)==0:
return
def dfs(board, i, j):
# 不处于矩阵内,或者如果已经标记的话,直接跳过
if not (0<=i<m) or not (0<=j<n) or board[i][j] != 'O':
return
# 当确认为未标记的,并与边界 'O' 直接间接相连的 'O' 时,标记为 'M'
board[i][j] = 'M'
# 向四个方位扩散
# 上下左右
dfs(board, i-1, j)
dfs(board, i+1, j)
dfs(board, i, j-1)
dfs(board, i, j+1)
m = len(board)
n = len(board[0])
# 从边界的 'O' 开始搜索
for i in range(m):
for j in range(n):
# 先确认 i,j 是否处于边界
is_frontier = (i == 0 or j == 0 or i == m-1 or j == n-1)
if is_frontier and board[i][j] == 'O':
dfs(board, i, j)
# 遍历二维数组,将被标记为 'M' 的重新转换为 'O',未标记的,则转换为 'X'
for i in range(m):
for j in range(n):
if board[i][j] == 'O':
board[i][j] = 'X'
if board[i][j] == 'M':
board[i][j] = 'O'
# 广度优先搜索(BFS)
class Solution:
def solve(self, board: List[List[str]]) -> None:
"""
Do not return anything, modify board in-place instead.
"""
if not board or len(board) == 0:
return
m = len(board)
n = len(board[0])
from collections import deque
queue = deque()
# bfs 不同于 dfs 顺着满足条件的方向继续搜索
# bfs 满足条件的都要入队列
# 先将边界的 'O' 入队
for i in range(m):
# 这里是二维矩阵的最左列与最右列
if board[i][0] == 'O':
queue.append((i, 0))
if board[i][n-1] == 'O':
queue.append((i, n-1))
for j in range(n):
# 这里是二维矩阵的第一行和最后一行
if board[0][j] == 'O':
queue.append((0, j))
if board[m-1][j] == 'O':
queue.append((m-1, j))
# 现在开始出队,目前里面的都是边界的 'O'
# 出队的同时,进行标记,同时查找与边界 'O' 相连的部分入队
while queue:
x, y = queue.popleft()
board[x][y] = 'M'
# 查找相连部分
for nx, ny in [(x-1, y), (x+1, y), (x, y-1), (x, y+1)]:
if 0 <= nx < m and 0 <= ny < n and board[nx][ny] == 'O':
queue.append((nx, ny))
# 同样的,标记完后,遍历整个二维矩阵,进行转换
for i in range(m):
for j in range(n):
if board[i][j] == 'O':
board[i][j] = 'X'
if board[i][j] == 'M':
board[i][j] = 'O'
剑指 Offer 32 - III. 从上到下打印二叉树 III
class Solution:
def levelOrder(self, root: TreeNode) -> List[List[int]]:
if not root: return []
from collections import deque
res, queue = [], deque()
queue.append(root)
while queue:
tmp = []
for _ in range(len(queue)):
p = queue.popleft()
tmp.append(p.val)
if p.left:
queue.append(p.left)
if p.right:
queue.append(p.right)
res.append(tmp[::-1] if len(res) % 2 else tmp)
return res