算法学习
文章平均质量分 77
Timmy_Y
实事求是,心怀梦想。
展开
-
模板匹配BLOCK MATCHING
因为在三维变换协通滤波中用到了模板匹配,因此照着维基百科进行了基础的学习,算是整理,也算是翻译吧 简介 模板匹配算法是用区域块匹配,主要用来做视频图像中的运动估计,可以去除图像序列时间冗余性(背景一般是不变化的)。模板匹配包括图像快分割以及比较操作,建立运动向量用来表示不同帧中某一块的位移信息。搜索区域对于一个好的匹配至关重要,定义为搜索参数p,指某一原创 2016-04-25 20:19:17 · 10978 阅读 · 0 评论 -
主成分分析PCA
PCA原理及MATLAB实现原创 2016-06-24 10:08:10 · 3132 阅读 · 1 评论 -
贝叶斯分类器
贝叶斯分类转载 2017-01-11 11:30:00 · 3656 阅读 · 0 评论 -
支持向量机SVM
支持向量机由于其优异的性能,在机器学习中与神经网络共享美誉。支持向量机的前身是最优间隔分类问题,在后者基础上加上核函数,便摇身一变为了SVM。本文参考周志华《机器学习》以及吴恩达网易公开课《机器学习》原创 2016-12-16 11:08:24 · 2186 阅读 · 0 评论 -
11行Python代码编写神经网络
11行python代码实现神经网络原文网址:http://iamtrask.github.io/2015/07/12/basic-python-network/翻译 2016-12-31 10:15:42 · 4939 阅读 · 4 评论 -
逻辑回归模型(logistic regression)
逻辑回归原创 2016-12-30 11:40:14 · 31517 阅读 · 0 评论 -
小波图像去噪及matlab实例
图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。原创 2017-03-09 15:09:48 · 100940 阅读 · 19 评论 -
盲去卷积原理及在图像复原的应用
盲去卷积的原理及在图像复原的应用原创 2017-03-28 21:01:57 · 45352 阅读 · 11 评论 -
维纳滤波在图像复原中的应用
图像退化/复原模型 g(x,y) = h(x,y)*f(x,y)+n(x,y) 频域:G(u,v) = H(u,v)F(u,v) +N(u,v) 其中f(x,y)为原始图像,h(x,y)为退化函数,n(x,y)为噪声函数,目标就是根据观测图像g(x,y)以及一些先验或者估计信息复原f(x,y) 图像复原的核心内容就是估计退化函数,因为当噪声N原创 2016-04-25 16:06:17 · 29313 阅读 · 1 评论 -
Python机器学习实战之决策树分类
机器学习实战之决策树原创 2016-12-29 10:38:15 · 1126 阅读 · 0 评论 -
Python机器学习实战之kNN手写识别系统
k近邻学习原创 2016-12-28 11:22:20 · 1577 阅读 · 0 评论 -
人脸识别经典算法(一):特征脸(Eigenface)
这篇文章是撸主要介绍人脸识别经典方法的第一篇,后续会有其他方法更新。特征脸方法基本是将人脸识别推向真正可用的第一种方法,了解一下还是很有必要的。特征脸用到的理论基础PCA在另一篇博客里:特征脸(Eigenface)理论基础-PCA(主成分分析法) 。本文的参考资料附在最后了^_^步骤一:获取包含M张人脸图像的集合S。在我们的例子里有25张人脸图像(虽然是25个不同人的人脸的图像,但是看着怎转载 2016-06-23 17:31:40 · 7413 阅读 · 0 评论 -
基于稀疏三维变换域协同滤波的图像降噪
目前是我图像处理大作业学习的论文,目前可能有的专业术语还不准确,欢迎指正、讨论 原文:Image denoising by sparse 3D transform-domain collaborative ltering,ACCEPTED. TO APPEAR IN IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, N原创 2016-04-14 19:29:06 · 5269 阅读 · 1 评论 -
基于训练数据的全局优化水下畸变图像复原
本文为针对我所研究的课题水下成像所学习文献的总结,欢迎交流、批评指正。如需源程序、文献等请私信。 原文:A Globally Seeing through Water:Image Restoration using Model-based Tracking(The Robotics Institute, Carnegie Mellon University).2009 IEEE 12th原创 2016-05-25 23:38:42 · 2682 阅读 · 2 评论 -
训练数据常用算法之Levenberg–Marquardt(LM)
Levenberg–Marquardt算法学习原创 2016-12-12 09:23:23 · 52709 阅读 · 2 评论 -
决策树及MATLAB函数使用
决策树算法以及MATLAB函数使用决策树的生成是一个递归的过程,在决策树算法原创 2016-12-13 10:40:39 · 55267 阅读 · 19 评论 -
流形学习{manifold learning}
流形学习 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低维流形结构,即找到高维空间中的低维流形,并求出相应的嵌入映射,以实现维数约简或者数据可视化。它是从观测到的现象中去寻找事物的本质,找到产生数据的内在规律。流形学习方法是模式识别中的基本方法,分为线性流形学习算法和非线性流形学习算法,线性方法就是传统的方法如主成分分析(PCA)和线性判别分析(LDA)转载 2016-04-27 16:27:06 · 3439 阅读 · 2 评论 -
SURF与SIFT比较
共同点:SIFT/SURF为了实现不同图像中相同场景的匹配,主要包括三个步骤:1、尺度空间的建立;2、特征点的提取;3、利用特征点周围邻域的信息生成特征描述子4、特征点匹配。从博客上看到一片文章,http://blog.csdn.net/cy513/archive/2009/08/05/4414352.aspx,这一段的大部分内容源于这篇文章,推荐大家去看看。如果两幅图转载 2016-11-23 16:56:26 · 5721 阅读 · 0 评论 -
coursera斯坦福Andrew Ng的机器学习编程作业答案
coursera课程,斯坦福Andrew Ng的机器学习编程作业答案(2-9章,共8个),本来也不难,主要是怕哪出遇到死胡同,可以参考一下。http://download.csdn.net/detail/mingtian715/9720249原创 2016-12-24 21:23:39 · 8803 阅读 · 0 评论 -
K均值聚类算法及MATLAB函数使用
K-means算法是最简单的一种聚类算法。算法的目的是使各个样本与所在类均值的误差平方和达到最小(这也是评价K-means算法最后聚类效果的评价标准)原创 2016-05-29 21:40:43 · 60761 阅读 · 1 评论