机器学习算法梳理—决策树

一、信息论基础

1.信息定义

如果待分类的事务可能划分在多个分类之中,则信息定义为:
在这里插入图片描述
其中,xi 表示第 i 个分类,p(xi) 表示选择第 i 个分类的概率。
其中,n 表示分类的数量。

2.熵

熵定义为信息的期望值。熵是用来衡量一个系统混乱程度的物理量,代表一个系统中蕴含多少信息量,信息量越大表明一个系统不确定性就越大,就存在越多的可能性。熵值越大,则随机变量的不确定性就越大。假如有变量X,其可能的分类有n种,熵,可以通过下面的公式得到:
在这里插入图片描述
其中Pi是变量出现的概率。一个事物内部会存在随机性,也就是不确定性,而从外部消除这个不确定性唯一的办法是引入信息。如果没有信息,任何公式或者数字的游戏都无法排除不确定性。

2. 条件熵

表示在直到某一条件后,某一随机变量的复杂性或不确定性。**知道的信息越多,随机事件的不确定性就越小。**定义如下:
在这里插入图片描述

3.联合熵

设X Y为两个随机变量,对于给定条件Y=y下,X的条件熵定义为:
在这里插入图片描述

4.信息增益

信息增益(information gain) 指的是划分数据集前后信息发生的变化。表示得知特征X的信息而使得类Y的信息的不确定性减少的程度。特征A对训练数据集D的信息增益g(D,A),定义为集合D的经验熵H(D)与特征A给定条件下D的经验条件熵H(D|A)之差,即:
在这里插入图片描述
熵H(Y)与条件熵H(Y|X)之差称为互信息(mutual information)

5.基尼不纯度

从一个数据集中随机选取子项,度量其被错误的划分到其他组里的概率。一个随机事件变成它的对立事件的概率。计算公式:(fi为某概率事件发生的概率)
在这里插入图片描述

二、ID3算法

1.原理

ID3算法(interative dichotomiser 3)的核心是在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树。具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一个决策树。相当于用极大似然法进行概率模型的选择。

2.过程

在这里插入图片描述

3.优缺点

ID3算法只有树的生成,所以该算法生成的树容易产生过拟合。

三、C4.5算法

1.原理

C4.5算法与 ID3 算法极为相似,只是在特征选择上有所不同,算是一种对 ID3 算法的改进了。C4.5算法在决策树生成过程中,用信息增益比来选择特征。

2.过程

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值