在上一篇博客中,我们已经处理好了模型需要的数据集,下一步就是准备模型去训练数据。这里提醒一句,在制作数据时,最好将训练集和测试集人为分开。像Google tensorflow API,在制作数据时可以按比例自动生成,但是在上一篇文章中产生的数据(annotation.csv )其实都是用来训练的,如果你把自己的数据集全都转换了,那么恭喜你,最后你会发现没有数据集去测试了。
下面开始模型准备
1.模型下载
下载地址:https://github.com/fizyr/keras-retinanet 两种方式,一是利用git直接clone下来,另外就是直接从网页下载:
2.模型安装与编译
上一篇博客介绍到,可以用debug.py对数据集是否合格进行检测,前提就是这里的安装与编译。
2.1安装:
到下载的模型的文件夹,shift+右键打开powershell,输入:
pip