Retinanet训练自己的数据(2):模型准备

本文介绍了如何使用Keras RetinaNet模型训练自己的数据集。首先强调在制作数据时应人为划分训练集和测试集。接着详细讲解了模型的下载、安装、编译过程,包括安装依赖库和解决编译问题。然后,通过测试预训练模型验证配置正确性。最后,预告下篇博客将讨论在自定义数据集上训练模型时遇到的问题。
摘要由CSDN通过智能技术生成

  在上一篇博客中,我们已经处理好了模型需要的数据集,下一步就是准备模型去训练数据。这里提醒一句,在制作数据时,最好将训练集和测试集人为分开。像Google tensorflow API,在制作数据时可以按比例自动生成,但是在上一篇文章中产生的数据(annotation.csv )其实都是用来训练的,如果你把自己的数据集全都转换了,那么恭喜你,最后你会发现没有数据集去测试了。

  下面开始模型准备

1.模型下载

下载地址:https://github.com/fizyr/keras-retinanet 两种方式,一是利用git直接clone下来,另外就是直接从网页下载:

2.模型安装与编译

上一篇博客介绍到,可以用debug.py对数据集是否合格进行检测,前提就是这里的安装与编译。

2.1安装:

到下载的模型的文件夹,shift+右键打开powershell,输入:

pip
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值