【Stanford Machine Learning】Lecture 2--Linear Regression with Multiple Variables

本系列(Stanford Machine Learning) blog包括单变量线性回归、多变量线性回归、OctaveTutorial、LogisticRegression、Regularization、SVM和聚类等机器学习内容。内容来至Stanford  Andrew的机器学习公开课的讲解(https://class.coursera.org/ml/class/index)。

第2讲--多变量线性回归


(一)multiple Features

 多变量假设函数:输入为多维特征量,输出由输入的多维决定.即 y = f(x1,x2,x3,...,xn)。比如房价有多个方面决定。



练习题



假设函数 h(x)= θ0+θ1x1+……+θnxn  即每个输入x有(n+1)维[x0……xn]


(二)Gradinet Descent for Multiple Variables

θ0,θ1,...记做θ, θ是一个n+1维的向量


左边是单变量梯度递减学习方法,右边是多变量梯度递减学习方法


(三) Gradient Descent in Practice I :Feature scaling

均值归一化操作特征值,将特征值归一化到[-1,1]区间, 归一化方法 (x1-u1)/s1 . u1表示平均值, s1表示标准差(最大值减去最小值也可)





练习题







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值