AUC计算方法总结

1、AUC是什么

混淆矩阵(Confusion matrix)

混淆矩阵是理解大多数评价指标的基础,毫无疑问也是理解AUC的基础。这里用一个经典图来解释混淆矩阵是什么。


显然,混淆矩阵包含四部分的信息:

  1. True negative(TN),称为真阴率,表明实际是负样本预测成负样本的样本数
  2. False positive(FP),称为假阳率,表明实际是负样本预测成正样本的样本数
  3. False negative(FN),称为假阴率,表明实际是正样本预测成负样本的样本数
  4. True positive(TP),称为真阳率,表明实际是正样本预测成正样本的样本数

对照着混淆矩阵记忆方法:我们按照位置前后分为两部分记忆,只要预测正确(实际与预测同正或同负)就是真,预测错误(实际与预测一正一负)就是假。后面的部分代表着预测的结果,预测成正就是阳,预测成负就是阴。

我所知道的几乎所有评价指标,都是建立在混淆矩阵基础上的,包括准确率、精准率、召回率、F1-score,当然也包括AUC。

阈值的理解

对于一个班级的成绩,有考10,,20,50,60,70,80,90,100等。如果将及格线定在60分,及格率可能为90%。如果将及格线定在70分,及格率可能为80%。如果将及格线定在90分,及格率可能为50%。即给定不同的分数线得到不同的及格率。

ROC曲线

事实上,要一下子弄清楚什么是AUC并不是那么容易,首先我们要从ROC曲线说起。对于某个二分类分类器来说,输出结果标签(0还是1)往往取决于输出的概率以及预定的概率阈值,比如常见的阈值就是0.5,大于0.5的认为是正样本,小于0.5的认为是负样本。如果增大这个阈值,预测错误(针对正样本而言,即指预测是正样本但是预测错误,下同)的概率就会降低但是随之而来的就是预测正确的概率也降低;如果减小这个阈值,那么预测正确的概率会升高但是同时预测错误的概率也会升高。实际上,这种阈值的选取也一定程度上反映了分类器的分类能力。我们当然希望无论选取多大的阈值,分类都能尽可能地正确,也就是希望该分类器的分类能力越强越好,一定程度上可以理解成一种鲁棒能力吧。
为了形象地衡量这种分类能力,ROC曲线横空出世!如下图所示,即为一条ROC曲线(该曲线的原始数据第三部分会介绍)。现在关心的是:

  • 横轴:False Positive Rate(假阳率,FPR)
  • 纵轴:True Positive Rate(真阳率,TPR)

  • 假阳率,简单通俗来理解就是预测为正样本但是预测错了的可能性,显然,我们不希望该指标太高。

    FPR=FPTN+FP

  • 真阳率,则是代表预测为正样本但是预测对了的可能性,当然,我们希望真阳率越高越好。

    TPR=TPTP+FN

显然,ROC曲线的横纵坐标都在[0,1]之间,自然ROC曲线的面积不大于1。现在我们来分析几个特殊情况,从而更好地掌握ROC曲线的性质

  • (0,0):假阳率和真阳率都为0,即分类器全部预测成负样本
  • (0,1):假阳率为0,真阳率为1,全部完美预测正确,happy
  • (1,0):假阳率为1,真阳率为0,全部完美预测错误,悲剧
  • (1,1):假阳率和真阳率都为1,即分类器全部预测成正样本
  • TPR=FPR,斜对角线,预测为正样本的结果一半是对的,一半是错的,代表随机分类器的预测效果

于是,我们可以得到基本的结论:ROC曲线在斜对角线以下,则表示该分类器效果差于随机分类器,反之,效果好于随机分类器,当然,我们希望ROC曲线尽量除于斜对角线以上,也就是向左上角(0,1)凸。

AUC(Area under the ROC curve)

ROC曲线一定程度上可以反映分类器的分类效果,但是不够直观,我们希望有这么一个指标,如果这个指标越大越好,越小越差,于是,就有了AUC。AUC实际上就是ROC曲线下的面积。AUC直观地反映了ROC曲线表达的分类能力

  • AUC = 1,代表完美分类器
  • 0.5 < AUC < 1,优于随机分类器
  • 0 < AUC < 0.5,差于随机分类器

AUC能拿来干什么

从作者有限的经历来说,AUC最大的应用应该就是点击率预估(CTR)的离线评估。CTR的离线评估在公司的技术流程中占有很重要的地位,一般来说,ABTest和转全观察的资源成本比较大,所以,一个合适的离线评价可以节省很多时间、人力、资源成本。那么,为什么AUC可以用来评价CTR呢?我们首先要清楚两个事情:

  1. CTR是把分类器输出的概率当做是点击率的预估值,如业界常用的LR模型,利用sigmoid函数将特征输入与概率输出联系起来,这个输出的概率就是点击率的预估值。内容的召回往往是根据CTR的排序而决定的。
  2. AUC量化了ROC曲线表达的分类能力。这种分类能力是与概率、阈值紧密相关的,分类能力越好(AUC越大),那么输出概率越合理,排序的结果越合理。

我们不仅希望分类器给出是否点击的分类信息,更需要分类器给出准确的概率值,作为排序的依据。所以,这里的AUC就直观地反映了CTR的准确性(也就是CTR的排序能力)

AUC如何求解

步骤如下:

  1. 得到结果数据,数据结构为:(输出概率,标签真值)
  2. 对结果数据按输出概率进行分组,得到(输出概率,该输出概率下真实正样本数,该输出概率下真实负样本数)。这样做的好处是方便后面的分组统计、阈值划分统计等
  3. 对结果数据按输出概率进行从大到小排序
  4. 从大到小,把每一个输出概率作为分类阈值,统计该分类阈值下的TPR和FPR
  5. 微元法计算ROC曲线面积、绘制ROC曲线

代码如下所示:

import pylab as pl
from math import log,exp,sqrt
import itertools
import operator

def read_file(file_path, accuracy=2):
    db = []  #(score,nonclk,clk)
    pos, neg = 0, 0 #正负样本数量
    #读取数据
    with open(file_path,'r') as fs:
        for line in fs:
            temp = eval(line)
            #精度可控
            #score = '%.1f' % float(temp[0])
            score = float(temp[0])
            trueLabel = int(temp[1])
            sample = [score, 0, 1] if trueLabel == 1 else [score, 1, 0]
            score,nonclk,clk = sample
            pos += clk #正样本
            neg += nonclk #负样本
            db.append(sample)
    return db, pos, neg

def get_roc(db, pos, neg):
    #按照输出概率,从大到小排序
    db = sorted(db, key=lambda x:x[0], reverse=True)
    file=open('data.txt','w')
    file.write(str(db))
    file.close()
    #计算ROC坐标点
    xy_arr = []
    tp, fp = 0., 0.
    for i in range(len(db)):
        tp += db[i][2]
        fp += db[i][1]
        xy_arr.append([fp/neg,tp/pos])
    return xy_arr

def get_AUC(xy_arr):
    #计算曲线下面积
    auc = 0.
    prev_x = 0
    for x,y in xy_arr:
        if x != prev_x:
            auc += (x - prev_x) * y
            prev_x = x
    return auc

def draw_ROC(xy_arr):
    x = [_v[0] for _v in xy_arr]
    y = [_v[1] for _v in xy_arr]
    pl.title("ROC curve of %s (AUC = %.4f)" % ('clk',auc))
    pl.xlabel("False Positive Rate")
    pl.ylabel("True Positive Rate")
    pl.plot(x, y)# use pylab to plot x and y
    pl.show()# show the plot on the screen

数据:提供的数据为每一个样本的(预测概率,真实标签)tuple
数据链接:https://pan.baidu.com/s/1c1FUzVM,密码1ax8
计算结果:AUC=0.747925810016,与Spark MLLib中的roc_AUC计算值基本吻合
当然,选择的概率精度越低,AUC计算的偏差就越大

总结

  1. ROC曲线反映了分类器的分类能力,结合考虑了分类器输出概率的准确性
  2. AUC量化了ROC曲线的分类能力,越大分类效果越好,输出概率越合理
  3. AUC常用作CTR的离线评价,AUC越大,CTR的排序能力越强

重要:https://www.jianshu.com/p/c61ae11cc5f6

  • 3
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在R语言中,计算随机森林模型的AUC(Area Under the ROC Curve)可以通过以下步骤实现: 1. 首先,你需要安装并加载`randomForest`和`pROC`这两个包。使用以下命令安装它们: ```R install.packages("randomForest") install.packages("pROC") ``` 然后加载它们: ```R library(randomForest) library(pROC) ``` 2. 接下来,你需要准备你的数据集,并将其划分为训练集和测试集。假设你的数据集名为`data`,其中包含特征变量`X`和目标变量`Y`。你可以使用以下代码将数据集划分为训练集和测试集: ```R set.seed(123) # 设置随机种子,以确保结果可复现 train_index <- sample(1:nrow(data), nrow(data) * 0.7) # 70%的数据作为训练集 train_data <- data[train_index, ] test_data <- data[-train_index, ] ``` 3. 然后,你可以使用`randomForest()`函数构建随机森林模型,并进行预测。假设你的目标变量是二分类问题,你可以使用以下代码: ```R model <- randomForest(Y ~ ., data = train_data, ntree = 100) predictions <- predict(model, newdata = test_data, type = "prob")[, 2] # 预测测试集的概率 ``` 4. 最后,使用`roc()`函数计算AUC。以下代码将计算AUC并输出结果: ```R roc_obj <- roc(test_data$Y, predictions) auc_value <- auc(roc_obj) auc_value ``` 这样,你就可以得到随机森林模型的AUC值。请注意,这里假设你的目标变量是二分类问题,因此预测结果是一个概率值。如果是多分类问题,你需要进行适当的修改。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值