双线性插值算法

维基百科计算方法:
这里写图片描述

举例:
这里写图片描述
这里写图片描述

解:
(1)最邻近插值法:
F(221.3, 396.7) = 45

(2)双线性插值法:

  1. 选择坐标系使得已知点坐标移动到(0,0)、(0,1)、(1,0)、(1,1)坐标点上
    把 F(221, 396)=18当作坐标轴原点,则此时原来的点(221, 396)与转换后的点(0,0)的坐标映射关系为:x—>x-221,y—>y-396
    F(221, 396)=18 —->F(0,0)=18
    F(221, 397)=45 —->F(0,1)=45
    F(222, 396)=52 —->F(1,0)=52
    F(222, 397)=36 —->F(1,1)=36

    要计算的F(221.3,396.7)—>F(0.3, 0.7)

  2. 使用矩阵形式的计算形式
    这里写图片描述
    PS:使用维基百科介绍的插值公式形式本质是一样的
    说明:坐标轴的转换仅改变元素的坐标(x, y),但不改变该元素的值F(x, y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值