麦克风的频率响应


驻极体麦克风的频率响应除了在4KHz附近有一个共振峰外基本上是平坦的。助听器中驻极体麦克风还使用了低频衰减,可以减少助听器对经常围绕在我们周围的低频强声的灵敏度。
要想获得低频衰减是很容易的:在前后振动膜之间留一条小的通道,让低频声音几乎同时撞击振动膜的两侧,这样减少了振动膜的位移。开口越大,衰减越多,衰减频率就越广。开口起到调节前后振动膜静态空气压的作用。不同程度低频衰减的麦克风经常使用在定制机上,可以获得我们希望的整体增益-频率响应。
  一) 麦克风的缺陷
(1)易损坏性。麦克风往往暴露在化学成分(如汗水)中,因而易受损坏。
(2)麦克风噪声。所有元件都会随机产生少量的电噪声,麦克风也不例外。麦克风总噪声一部分是由空气分子对振动膜的随机运动产生的,另一部分是由麦克风内部噪声组成的。噪声如果被助听器的放大器放大,有时在安静环境下也可以被助听器使用者听到,尤其使用者在该频率的听阈接近正常。一般通过衰减麦克风的低频频率响应来降低噪声。
(3)对振动的敏感性。麦克风对振动很敏感,比如,摩擦助听器的声音(盒式助听器与衣服相摩擦、身体的直接振动(如在硬的平面上跑动)、撞击声等,这些振动放大后成为一个较吵的声音。其次当助听器的授话器工作时,会产生声音和振动。麦克风拾取部分振动,转换成电信号,然后被助听器放大,传送到授话器,这又会产生进一步的振动。因而有可能在低频上产生一个听得到的振动。我们需要通过调整麦克风和授话器的位置来避免这个问题。
(4)易受风噪声的影响。当风撞击头部、耳廓或助听器时,会产生压力的波动。麦克风把这些振动转换成电的波动—佩戴者有可能会听得到低中频噪声。最好的解决方法是把进声孔放置在耳道深处。让麦克风的进声孔远离风的波动也可以减少风噪声的影响,或者在麦克风的开口上放置网筛,但这个效果差一点。简单有效的方法是直接让佩戴者使用薄的围巾,这可以阻止风对助听器和耳廓的撞击,减少空气波动。
此外当助听器的结构设计不好时,会产生麦克风的另一个缺陷。如果麦克风与进声孔之间的管子长且壁薄,由于赫尔姆霍茨共振,在输出的增益-频率响应会产生一个很大的峰,而且超过峰频率的频率增益就下降得很快,这样减小了助听器的频响范围。

http://hi.baidu.com/%B1%B1%BE%A9%B7%BF%C9%BD%D6%FA%CC%FD%C6%F7/blog/item/be51333fb4b709d59f3d6282.html




### 麦克风冲激响应镜像法原理与实现 #### 1. 镜像法基本概念 镜像法(Image Method),也称为镜像声源模型,是一种广泛应用于声学信号处理中的技术。它最早由 Allen 和 Berkley 在 1979 年提出,并成为生成房间声学冲激响应(Room Impulse Response, RIR)的核心方法之一[^1]。 该方法的主要思想是通过虚拟声源的概念来模拟声音在封闭空间内的传播行为。具体而言,在实际环境中,当一个声源发出声音时,由于墙壁、天花板和地板的存在,声音会经过多次反射到达接收点(如麦克风)。这些反射路径可以被看作是从多个“镜像声源”到接收点的直达路径。通过对这些镜像声源的位置进行建模并计算其对应的延迟时间和衰减系数,即可得到完整的冲激响应。 #### 2. 实现过程 为了实现基于镜像法的麦克风冲激响应生成,通常需要以下几个关键参数: - **房间尺寸**:定义三维空间的大小,即长度、宽度和高度。 - **声源位置**:指定声源相对于房间坐标系的具体位置。 - **麦克风位置**:指定接收端(麦克风阵列或其他设备)的位置。 - **反射阶数**:控制考虑多少次反射的影响。较高的阶数能够更精确地反映真实环境,但也增加了计算复杂度。 - **材料吸收特性**:不同表面具有不同的吸音能力,这会影响每次反射后的能量损失。 以下是基于 Matlab 的一个多通道 RIR 生成功能示例代码片段,其中利用了 mex 函数加速核心运算部分: ```matlab function rir = generate_rir(room_dim, source_pos, mic_pos, fs, max_order) % room_dim: 房间维度 [Lx, Ly, Lz] % source_pos: 声源位置 [x_s, y_s, z_s] % mic_pos: 微型话筒位置矩阵 N_mics x 3 % fs: 采样频率 (Hz) % max_order: 反射最大阶数 c = 343; % 声速 m/s t_max = max_order * sqrt(sum((room_dim .* 2).^2)) / c; n_samples = ceil(t_max * fs); rir = zeros(n_samples, size(mic_pos, 1)); for k = 1:size(mic_pos, 1) images = compute_images(source_pos, room_dim, max_order); delays = norm(images - repmat(mic_pos(k,:), size(images, 1), 1), [], 2) ./ c; attenuations = exp(-pi * abs(delays)); % 简化版衰减因子 t_indices = round(delays * fs) + 1; valid_idx = find(t_indices <= n_samples); for idx = valid_idx' rir(t_indices(idx), k) = rir(t_indices(idx), k) + attenuations(idx); end end ``` 上述代码实现了以下功能: - 计算所有可能的镜像声源及其对应的时间延迟 `delays` 和幅度衰减 `attenuations`。 - 将结果存储在一个二维数组中,每一列表示单个麦克风接收到的冲激响应序列。 #### 3. 关键技术和优化策略 除了基础算法外,还可以引入一些改进措施提升效率或精度: - 使用低通滤波器平滑高频分量以减少混叠效应[^3]。 - 考虑空气吸收随距离增加而产生的额外损耗。 - 支持可变指向性的麦克风模型以便更好地匹配实际情况。 此外,带通滤波器的应用也是值得注意的一环。它们可以在音频处理阶段进一步增强目标频段的表现力,从而改善最终效果[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值