科大讯飞“飞星计划”一面二面面经

博主意外参与科大讯飞“飞星计划”面试,经历了一次匆忙的电话面试,涉及机器学习基础知识如PCA、EM算法及HMM,虽未充分准备仍顺利通过初试。二次面试聚焦实习经历,探讨项目贡献与数据处理经验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近比较忙,本来没打算投简历,可是莫名其妙被拉进科大讯飞“飞星计划”的群,然后莫名其妙被hr私戳。hr太热情了,还用老乡关系套近乎,我想着太久没面试了,所以就投了简历。

一面

本来约的视频面试,可是hr给我发微信我没看到,就一直以为是1点面试,结果在去吃饭的途中被截住面了个试(幸亏不是吃到一半截住~),面试官说他一会1点有个会,晚上也有会,所以必须马上开始。

由于双方都没有时间,所以视频改为电话,我找了个偏僻的角落,开始面试。

一开始还好,问论文和项目,没有太多深挖,就在挖广度,一直会问你还有别的项目吗什么的,一连问了四个项目。

然后面试官问了我一句会点机器学习吗?我嘴欠说了会一点(难道要说不会吗2333),结果就是死亡提问模式。

首先问我会不会pca,这个我熟,毕设做过,然而时间太久讲不清楚。

然后问我会不会EM算法,这个真不会。HMM呢,也不会。

EM算法过程

首先,初始化参数θ

  (1)E-Step:根据参数θ计算每个样本属于zi的概率,这个概率就是Q

  (2)M-Step:根据计算得到的Q,求出含有θ的似然函数的下界并最大化它,得到新的参数θ

  重复(1)和(2)直到收敛,可以看到,从思想上来说,和最大似然没什么两样,只不过直接最大化似然函数不好做,曲线救国而已。

  需要额外说明的是,EM算法在一般情况是收敛的,但是不保证收敛到全局最优,即有可能进入局部的最优。EM算法在混合高斯模型,隐马尔科夫模型中都有应用,是著名的数据挖掘十大算法之一。

HMM(隐马尔科夫)

下面这篇博客写得特别好

https://blog.csdn.net/Mr_wuliboy/article/details/80302483

结束。

之后面试官还问我有没有其他公司的offer,我说有vivo的,问了年薪。

虽然,没答上来,大概就是面试成绩不会太高,心里总感觉能过。

果然过了两个小时左右,hr打电话来通知初试过了,约下一次的时间。

二面

又约在了中午吃饭的时间,一个感觉像主管一样的面试官。

全程只问实习经历,印象比较深的就是问我我所做的这一块对整个业务的贡献占多少比重?实习最大的感受是什么?你处理数据的精力占你整个工作过程的多少比重?

其他的记不清了。

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值