在半导体行业,工程师依靠 CP Yield(生产过程中芯片的合格率)、WAT(晶圆验收测试)和 Particle 的晶圆图模式来识别工艺问题。然而,在没有人工干预的情况下将这些晶圆图模式分类是一项重大挑战。许多论文都研究了这个问题,从这一篇纹章旗,我将和您一起来学习使用深度学习的技术来解决该问题的方法。
一、半导体质量控制概念
(1)CP Yield
CP Yield 是指 Critical Process Yield,即“关键工艺良率”。它衡量的是在半导体制造过程中特定关键工艺步骤的良品率,反映了该工艺步骤的生产效率和质量控制水平。
具体来说,CP Yield 聚焦于那些对最终产品质量和性能影响最大的工艺步骤,如掩膜制作、光刻、离子注入、化学机械抛光(CMP)等。这些工艺步骤被认为是生产过程中最为“关键”的环节,因为它们直接决定了最终芯片的性能、功能和良率。
关键点:
-
影响因素: CP Yield 受到多种因素的影响,包括设备精度、工艺参数的控制、环境条件(如温湿度)、原材料的质量等。
-
重要性: 高的 CP Yield 表示该工艺步骤具有较好的稳定性和可控性,能够生产出更多符合要求的合格芯片,降低了缺陷率和返工成本。相反,低的 CP Yield 可能意味着工艺中存在问题,需要调整或优化。
-
与总良率的关系: CP Yield 是影响整体生产良率(Total Yield)的重要因素,特别是在复杂的集成电路制造过程中,良好的 CP Yield 能显著提高整体良率。
(2)WAT
WAT 通常是指 Wafer Acceptance Test(晶圆验收测试)。WAT 是一种测试过程,用于评估和验证半导体晶圆在生产过程中是否符合质量标准,通常在晶圆的加工和封装过程之前进行。它通常包括以下几个方面:
-
电性能测试: 确保晶圆上的每个芯片是否正常工作,符合电气性能规格。这可能包括测量电流、电压、功耗等。
-
物理尺寸测量: 确保晶圆的物理尺寸、厚度等参数是否符合设计要求。
-
缺陷检测: 检查晶圆表面是否有任何可见的缺陷或污染物,例如划痕、裂纹、气泡等。
-
光学检查: 通过光学显微镜或其他仪器检测晶圆表面的质量,确认没有严重的缺陷。
WAT 的目的是在进入下游的封装、测试和最终出货之前,确保每片晶圆的质量符合规范,避免不良产品流入生产线或市场,节省后期处理的成本。
二、WM-811K Wafermap
(1) 简介
WM-811K Wafermap 数据集是一个用于缺陷检测和分类的公开数据集,主要用于研究半导体制造过程中的晶圆缺陷分析。这一数据集由许多晶圆的缺陷模式组成,其中每个晶圆被标记为正常或存在某种类型的缺陷模式。研究人员和从业者可以利用该数据集来开发和评估机器学习和深度学习算法,以自动化地检测和识别晶圆上的缺陷模式。
通常情况下,一片8英寸wafer上往往可以放置数百到上千颗芯片(die - 晶粒),具体视芯片的面积大小。
WM-811K Wafermap 数据集包含 811,457 幅图像,其中172,950 幅图像具有手动缺陷标签,总共包含 9 个缺陷标签:0、1、2、3、4、5、6、7 和 8。其中,标签 8(代表无模式 -no pattern)占总数的 85.2%。在wafer测试中。
9种缺陷标签分别是:0 中心(