半导体数据分析: 玩转WM-811K Wafermap 数据集(一) AI 机器学习

在半导体行业,工程师依靠 CP Yield(生产过程中芯片的合格率)、WAT(晶圆验收测试)和 Particle 的晶圆图模式来识别工艺问题。然而,在没有人工干预的情况下将这些晶圆图模式分类是一项重大挑战。许多论文都研究了这个问题,从这一篇纹章旗,我将和您一起来学习使用深度学习的技术来解决该问题的方法。

一、半导体质量控制概念

(1)CP Yield

CP Yield 是指 Critical Process Yield,即“关键工艺良率”。它衡量的是在半导体制造过程中特定关键工艺步骤的良品率,反映了该工艺步骤的生产效率和质量控制水平。

具体来说,CP Yield 聚焦于那些对最终产品质量和性能影响最大的工艺步骤,如掩膜制作、光刻、离子注入、化学机械抛光(CMP)等。这些工艺步骤被认为是生产过程中最为“关键”的环节,因为它们直接决定了最终芯片的性能、功能和良率。

关键点:

  1. 影响因素: CP Yield 受到多种因素的影响,包括设备精度、工艺参数的控制、环境条件(如温湿度)、原材料的质量等。

  2. 重要性: 高的 CP Yield 表示该工艺步骤具有较好的稳定性和可控性,能够生产出更多符合要求的合格芯片,降低了缺陷率和返工成本。相反,低的 CP Yield 可能意味着工艺中存在问题,需要调整或优化。

  3. 与总良率的关系: CP Yield 是影响整体生产良率(Total Yield)的重要因素,特别是在复杂的集成电路制造过程中,良好的 CP Yield 能显著提高整体良率。

(2)WAT

WAT 通常是指 Wafer Acceptance Test(晶圆验收测试)。WAT 是一种测试过程,用于评估和验证半导体晶圆在生产过程中是否符合质量标准,通常在晶圆的加工和封装过程之前进行。它通常包括以下几个方面:

  1. 电性能测试: 确保晶圆上的每个芯片是否正常工作,符合电气性能规格。这可能包括测量电流、电压、功耗等。

  2. 物理尺寸测量: 确保晶圆的物理尺寸、厚度等参数是否符合设计要求。

  3. 缺陷检测: 检查晶圆表面是否有任何可见的缺陷或污染物,例如划痕、裂纹、气泡等。

  4. 光学检查: 通过光学显微镜或其他仪器检测晶圆表面的质量,确认没有严重的缺陷。

WAT 的目的是在进入下游的封装、测试和最终出货之前,确保每片晶圆的质量符合规范,避免不良产品流入生产线或市场,节省后期处理的成本。

 

二、WM-811K Wafermap

(1) 简介

WM-811K Wafermap 数据集是一个用于缺陷检测和分类的公开数据集,主要用于研究半导体制造过程中的晶圆缺陷分析。这一数据集由许多晶圆的缺陷模式组成,其中每个晶圆被标记为正常或存在某种类型的缺陷模式。研究人员和从业者可以利用该数据集来开发和评估机器学习和深度学习算法,以自动化地检测和识别晶圆上的缺陷模式。

通常情况下,一片8英寸wafer上往往可以放置数百到上千颗芯片(die - 晶粒),具体视芯片的面积大小。

WM-811K Wafermap 数据集包含 811,457 幅图像,其中172,950 幅图像具有手动缺陷标签,总共包含 9 个缺陷标签:0、1、2、3、4、5、6、7 和 8。其中,标签 8(代表无模式 -no pattern)占总数的 85.2%。在wafer测试中。

9种缺陷标签分别是:0 中心(

### WM-811K 晶圆图数据格式概述 WM-811K 是种用于描述半导体制造过程中晶圆缺陷分布的标准数据集。该数据通常被用来训练机器学习模型以检测模式、预测良率或其他质量控制目标[^1]。 #### 数据结构 WM-811K 的核心是个二维矩阵,其中每行代表个特定的径向位置(距离中心的距离),而列则表示角度方向上的分割区域。具体来说: - **Wafer ID**:标识每片晶圆。 - **Defect Type (Label)**: 缺陷类别标签,可能包括随机噪声型、集中簇型等多种形式。 - **Matrix Dimensions**: 矩阵大小通常是固定的,例如 \( 27 \times 27 \),对应于划分后的网格单元格数。 以下是 Python 中的个简单示例来展示如何加载并处理此类数据: ```python import numpy as np def load_wm_811k_data(file_path): """ 加载 WM-811K 格式的晶圆映射数据文件。 参数: file_path (str): 文件路径 返回: tuple: 包含特征和标签的数据元组 (features, labels) """ data = np.load(file_path) # 假设为 .npy 或其他 NumPy 支持的存储方式 features = data['wafer_maps'] # 提取晶圆地图部分 labels = data['labels'] # 对应的分类标签 return features, labels # 使用方法 file_name = 'wm_811k_dataset.npy' X, y = load_wm_811k_data(file_name) print(f"Features shape: {X.shape}") # 输出形状如 (num_samples, 27, 27) print(f"Labels shape: {y.shape}") # 输出形状如 (num_samples,) ``` #### 示例数据片段 假设我们有个小型样本集合,则其内容可以如下所示: | Wafer Map Index | Defect Label | |------------------|--------------| | [[0, 1, ...],...] | Random Noise | | [[1, 0, ...],...] | Clustered | 这里,“Random Noise” 表明整个晶圆上均匀散布着少量缺陷;“Clustered” 则意味着某些局部区域内存在高密度聚集现象[^2]。 #### 应用场景 这种类型的晶圆图广泛应用于工业界中的多个领域,比如通过卷积神经网络识别不同种类的失效模式,从而优化生产流程或者减少报废成本等操作环节之中[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值