生物特征识别中的Gabor滤波器

Daugman(1980)提出的2D Gabor滤波器(以下简称Gabor滤波器),在纹理分类、纹理分割、生物特征识别中取得了广泛的应用。本文首先简要介绍Gabor滤波器,然后列举它在生物特征识别方面的代表性应用。

2D Gabor滤波器

2D Gabor滤波器的表达式为:

G(x,y)=\exp\left (-\pi\left ( x^2/\alpha^2+y^2/\beta^2 \right ) \right ) \cdot \exp\left(-2\pi i\left ( u_0x+v_0y \right ) \right ),

其中第一项为高斯函数,第二项为复函数(实部为余弦波,虚部为正弦波)。下面几幅图可视化了不同参数的Gabor滤波器。

Gabor滤波器的实部是高斯函数和余弦波的乘积,虚部是高斯函数和正弦波的乘积。上图为Gabor滤波器及成分显示为曲面。

Gabor滤波器及成分显示为灰度图像。

波长为10个像素、8个方向的Gabor复滤波器的实部和虚部。 

单一方向、不同波长(或频率)的偶对称Gabor滤波器。

虹膜识别

剑桥大学Daugman(1993)在虹膜识别的奠基论文中介绍了基于Gabor滤波的虹膜编码方法(著名的IrisCode)。作者首先定位虹膜,将虹膜纹理转化为极坐标表示;然后用Gabor复滤波器计算每个局部位置的相位,并量化为2个比特;最后将整个虹膜编码为2048个比特(256字节)。两个虹膜的距离定义为归一化的汉明距离。

左上方的比特串(IrisCode)是采用二维Gabor复滤波器对虹膜图像的相位编码(Daugman,2001)

指纹识别

指纹增强

密西根州立大学Hong等人(1998)提出将Gabor滤波器的实部(偶对称)用于指纹脊线增强。具体而言,Gabor滤波器的方向和频率参数与指纹空间位置相关,是由局部脊线方向和频率决定的。如果局部脊线方向和频率是正确的,Gabor滤波就可以有效增强脊线和压制噪声,从而提高之后细节点提取步骤的性能。虽然Gabor滤波的指纹增强效果和更早的匹配滤波器(Gorman和Nickerson,1989)、频域方向滤波器(Sherlock等人,1994)相当,但可能因为论文写得很清楚、算法容易复现(对Gabor滤波之外的其他步骤也有详细描述),这篇论文对于指纹识别领域的影响很大,是该领域被引用最多的论文之一。可能因为这篇论文的影响太大了,许多做指纹识别的人误以为Gabor滤波器的实部就是Gabor滤波器,不知道它还有个虚部。

Hong等人(1998)提出的指纹增强算法流程图

指纹匹配

指纹匹配(比对)的主流技术是细节点比对(一个例外是手机指纹识别,由于指纹传感器的面积太小,小面积指纹匹配走的是另一条路线)。但是,细节点比对技术有两个缺点:第一,当细节点的数量和质量下降很大时,比对性能会断崖式下降;第二,细节点比对是点匹配问题,运算复杂度很高。

受到了IrisCode的启发,密西根州立大学Jain等人(2000)提出了FingerCode指纹定长表示方法。作者首先定位出指纹中央的圆形感兴趣区域,对其进行8个方向、固定频率的Gabor滤波(仅用实部);感兴趣区域被划分为80个扇形区域,每个区域计算滤波结果的灰度方差,总体构成640维的特征向量;特征向量的欧氏距离作为两个指纹之间的距离。作者的实验发现,当认假率(FAR)要求不苛刻时,FingerCode的性能比较好。但是,FingerCode有两个主要缺陷:第一,没有捕捉指纹的细节特征;第二,没有充分考虑指纹旋转。由于这两个缺陷,在实际应用中(认假率要求苛刻),FingerCode的比对性能远不如主流的细节点比对技术。除了匹配,FingerCode还用在了指纹纹型分类上(Jain等人,1999),并取得了当时不错的分类性能。这也说明FingerCode捕捉的是比较宏观的特征,更适合做粗分类问题。

Jain等人(2000)提出的FingerCode

在指纹细节点比对一统江湖的情况下,FingerCode开定长表示的先河,在学术界产生了很大的影响。许多研究者对它进行了改进和发展。但是,由于比对精度明显不如细节点比对方法,FingerCode在工业界并没有产生很大的影响。直到20年后,深度学习兴起,从指纹图像直接学习定长向量表示的技术成为现实。Jain实验室提出了DeepPrint指纹定长表示方法(Engelsma等人,2021),在许多指纹库上的比对性能已经接近了主流细节点比对技术,在某些数据库上甚至超过了细节点比对技术。 

Engelsma等人(2021)提出的DeepPrint指纹定长表示方法

指纹配准

Gabor复滤波器测量的指纹瞬时相位图与虹膜的相位图类似。但是不像虹膜,指纹图像的变形很大,轻微的皮肤变形就会带来相位错位,就能导致真匹配的差异比假匹配还大。因此不能像虹膜那样,直接比较相位图计算指纹匹配分数。不过两幅相位图的差异为估计指纹之间的变形场提供了线索。清华大学Cui等人(2018)提出首先利用细节点匹配进行指纹的粗配准,然后计算两幅指纹相位图的差异,最后进行二维相位解包裹(unwrapping),得到指纹之间的像素级变形场。经过像素级配准之后的指纹,可以通过比较相位图来计算匹配分数了。

Cui等人(2018)提出的基于二维相位解调的指纹像素级变形场估计(用于两幅指纹图像的精密配准)

指纹压缩

佳能公司Larkin和Fletcher(2007)提出将Gabor相位图分解为连续相位(无细节点)和螺旋相位(仅包含细节点),分别采用合适的压缩方法,实现了压缩比极高(239:1,比JPEG高一个数量级)的指纹图像压缩。 这篇论文最早指出指纹细节点对应于螺旋相位,可以用简单的数学模型来建模细节点。这个性质可以被用来从相位图检测细节点(Gao等人,2010)以及基于细节点的指纹图像重建(Feng和Jain,2011)。可能因为这篇论文不是发表在生物特征识别领域的期刊和会议,而且论文的写作不太典型(比如没有大规模定量实验),它的引用次数很少,和它的重要性很不成比例。

Larkin和Fletcher(2007)实现了239:1的压缩比。左:重建图像;右:原图。

人脸识别

如今的人脸识别都是基于深度学习的方法。不过在2010年之前,出现过一批基于Gabor滤波的人脸表示方法。例如,中科院计算所Zhang等人(2005)提出了一种基于局部Gabor二值模式直方图序列(LGBPHS)的人脸表示方法。该方法连接所有局部Gabor幅度二值模式图的直方图,将人脸图像建模为直方图序列。在识别时,采用直方图相交来衡量不同向量的相似度。

Zhang等人(2005)提出的局部Gabor二值模式直方图序列 (LGBPHS)

 

掌纹识别

香港理工大学Zhang等人(2003)提出了可以在线运行的非接触掌纹识别技术,仅用低分辨率的摄像头(无法观察脊线和细节点),就实现了高性能的身份识别,开创了非接触掌纹识别方向。作者首先定位并裁剪出掌纹的感兴趣区域;然后利用特定方向(45度)和频率的Gabor复滤波器对感兴趣区域进行滤波,把每个像素的相位量化为2个bit,作为掌纹的特征表示;最后利用归一化汉明距离来测量两个掌纹的距离。

三幅掌纹图像及Gabor滤波的实部和虚部(Zhang等人,2003)

Zhang等人(2003)的论文在生物特征识别学术界产生了很大影响。在谷歌学术搜索掌纹识别,绝大部分论文是关于非接触掌纹识别,而不是接触式掌纹识别(主要是面向公安应用)。可惜非接触掌纹识别一直没有取得大规模的实际应用,可能是因为率先成熟的指纹、人脸、虹膜识别已经占据了大部分的市场空间。一个突破是2020年亚马逊发布的Amazon One掌纹识别技术,应用于无人零售店的缴费环节,实现刷手结账。

亚马逊公司的Amazon One掌纹识别技术

 

指静脉和掌静脉 

研究者还将Gabor滤波器用于指静脉和掌静脉的血管提取、特征表示等(Yang等人,2009;Han和Lee,2012)。

Han和Lee(2012)对掌静脉进行Gabor滤波的结果

 

参考文献

  • Cui, Z., Feng, J., Li, S., Lu, J., & Zhou, J. (2018). 2-D phase demodulation for deformable fingerprint registration. IEEE Transactions on Information Forensics and Security13(12), 3153-3165.
  • Daugman, J. G. (1980). Two-dimensional spectral analysis of cortical receptive field profiles. Vision research20(10), 847-856.
  • Daugman, J. G. (1993). High confidence visual recognition of persons by a test of statistical independence. IEEE transactions on pattern analysis and machine intelligence15(11), 1148-1161.
  • Daugman, J. (2001). Statistical richness of visual phase information: update on recognizing persons by iris patterns. International Journal of computer vision45(1), 25-38.
  • Engelsma, J. J., Cao, K., & Jain, A. K. (2021). Learning a fixed-length fingerprint representation. IEEE transactions on pattern analysis and machine intelligence43(6), 1981-1997.
  • Feng, J., & Jain, A. K. (2011). Fingerprint reconstruction: from minutiae to phase. IEEE transactions on pattern analysis and machine intelligence33(2), 209-223.
  • Gao, X., Chen, X., Cao, J., Deng, Z., Liu, C., & Feng, J. (2010). A novel method of fingerprint minutiae extraction based on Gabor phase. In 2010 IEEE International Conference on Image Processing (pp. 3077-3080). IEEE.
  • O'Gorman, L., & Nickerson, J. V. (1989). An approach to fingerprint filter design. Pattern recognition22(1), 29-38.
  • Han, W. Y., & Lee, J. C. (2012). Palm vein recognition using adaptive Gabor filter. Expert Systems with Applications39(18), 13225-13234.
  • Hong, L., Wan, Y., & Jain, A. (1998). Fingerprint image enhancement: Algorithm and performance evaluation. IEEE transactions on pattern analysis and machine intelligence20(8), 777-789.
  • Jain, A. K., Prabhakar, S., & Hong, L. (1999). A multichannel approach to fingerprint classification. IEEE transactions on pattern analysis and machine intelligence21(4), 348-359.
  • Jain, A. K., Prabhakar, S., Hong, L., & Pankanti, S. (2000). Filterbank-based fingerprint matching. IEEE transactions on Image Processing9(5), 846-859.
  • Larkin, K. G., & Fletcher, P. A. (2007). A coherent framework for fingerprint analysis: are fingerprints holograms?. Optics express15(14), 8667-8677.
  • Sherlock, B. G., Monro, D. M., & Millard, K. (1994). Fingerprint enhancement by directional Fourier filtering. IEE Proceedings-Vision, Image and Signal Processing141(2), 87-94.
  • Yang, J., Shi, Y., & Yang, J. (2009). Finger-vein recognition based on a bank of Gabor filters. In Asian Conference on Computer Vision (pp. 374-383). 
  • Zhang, D., Kong, W. K., You, J., & Wong, M. (2003). Online palmprint identification. IEEE Transactions on pattern analysis and machine intelligence25(9), 1041-1050.
  • Zhang, W., Shan, S., Gao, W., Chen, X., & Zhang, H. (2005). Local gabor binary pattern histogram sequence (lgbphs): A novel non-statistical model for face representation and recognition. In Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1 (Vol. 1, pp. 786-791). IEEE.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值