Gabor滤波器

Gabor滤波器是一种线性滤波器,适用于边缘提取和纹理分析,因其与人类视觉系统相似而广泛应用。它在人脸识别预处理中尤为有用。二维Gabor滤波器是正弦波与高斯函数的乘积,通过调整参数可以提取不同特征。实验显示,Gabor滤波器对光照变化具有较好的稳定性,并能从不同角度提取人脸特征。
摘要由CSDN通过智能技术生成

Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。

图1是Gabor滤波器和脊椎动物视觉皮层感受野响应的比较

      Gabor与脊椎动物视觉响应的比较
                图1. Gabor与脊椎动物视觉皮层感受野响应的比较

图1中第一行是脊椎动物的视觉响应,第二行是Gabor滤波器的响应,可以看到,二者相差极小。
基于以上特性,Gabor滤波器被广泛应用于人脸识别的预处理。


Gabor理论及公式

我们知道,傅里叶变换可以将信号从时域转换到频域,但无法获得频谱中不同频率之间的先后关系。
然而实际应用中我们更多的关心信号局部范围内的的特性,Gabor和小波变换突破了傅里叶变换的局限性

Gabor变换是D.Gabor于1946年提出的,为了提取傅里叶变换的局部信息,引入了时间局部化的窗函数(把信号划分成许多小的时间间隔,用傅里叶变换分析每一个间隔)。因此Gabor变换又称为窗口傅里叶变换(短时傅里叶变换)

二维Gabor滤波器

在空间域,一个二维的Gabor滤波器是一个正弦平面波和高斯核函数的乘积。前者是调谐函数,后者是窗口函数。

g(x,y;λ,θ,ψ,σ,γ)=ex2+γ2y22σ2ei(2πxλ+ψ)

可以分为实部与虚部的形式
greal(x,y;λ,θ,ψ,σ
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值