Gabor是一个用于边缘提取的线性滤波器,其频率和方向表达与人类视觉系统类似,能够提供良好的方向选择和尺度选择特性,而且对于光照变化不敏感,因此十分适合纹理分析。
图1. Gabor与脊椎动物视觉皮层感受野响应的比较
图1中第一行是脊椎动物的视觉响应,第二行是Gabor滤波器的响应,可以看到,二者相差极小。
基于以上特性,Gabor滤波器被广泛应用于人脸识别的预处理。
Gabor理论及公式
我们知道,傅里叶变换可以将信号从时域转换到频域,但无法获得频谱中不同频率之间的先后关系。
然而实际应用中我们更多的关心信号局部范围内的的特性,Gabor和小波变换突破了傅里叶变换的局限性。
Gabor变换是D.Gabor于1946年提出的,为了提取傅里叶变换的局部信息,引入了时间局部化的窗函数(把信号划分成许多小的时间间隔,用傅里叶变换分析每一个间隔)。因此Gabor变换又称为窗口傅里叶变换(短时傅里叶变换)。
二维Gabor滤波器
在空间域,一个二维的Gabor滤波器是一个正弦平面波和高斯核函数的乘积。前者是调谐函数,后者是窗口函数。
g(x,y;λ,θ,ψ,σ,γ)=e−x′2+γ2y′22σ2ei(2πx′λ+ψ)
可以分为实部与虚部的形式
⎧⎩⎨⎪⎪⎪⎪greal(x,y;λ,θ,ψ,σ