数学建模之存储论

存储论

存贮论(一):基本概念、无约束的确定型存贮模型_存储论模型_wamg潇潇的博客-CSDN博客(有例题lingo代码)

存储论(二):有约束的确定型存贮模型、单周期随机库存模型_存储论四个模型公式_wamg潇潇的博客-CSDN博客(有例题matlab和lingo代码)

存贮论(或称为库存论)研究存贮系统的 性质、运行规律以及如何寻找最优存贮策略。所谓存贮实质上是将供应与需求两个环节以存贮中心联结起来,起到协调与缓和 供需之间矛盾的作用。

1 存贮模型中的基本概念

1.存贮问题的基本要素            

2.存贮模型的基本费用

3.存贮策略

2 无约束的确定型存贮模型

2.1 模型一:不允许缺货,补充时间极短—基本的经济订购批量存贮模型

2.2 模型二:允许缺货,补充时间较长—经济生产批量存贮模型

2.3 模型三:不允许缺货,补充时间较长—基本的经济生产批量存贮模型

2.4 模型四:允许缺货,补充时间极短的经济订购批量存贮模型

2.5 模型五:经济定购批量折扣模型

3 有约束的确定型存贮模型

3.1 带有约束的经济订购批量存贮模型

3.1.1 具有资金约束的 EOQ 模

3.1.2 具有库容约束的 EOQ 模型

3.1.3 兼有资金与库容约束的最佳批量模型

3.2 带有约束允许缺货模型

3.3 带有约束的经济生产批量存贮模型

4 单周期随机库存模型

4.1 模型的基本假设

4.2 模型的推导

4.3 模型的求解

习题

1 存贮模型中的基本概念

所谓存贮实质上是将供应与需求两个环节以存贮中心联结起来,起到协调与缓和 供需之间矛盾的作用。存贮模型的基本形式如图 1 所示。

1.存贮问题的基本要素

(1)需求率:单位时间内对某种物品的需求量,用 D 表示。

(2)订货批量:一次订货中,包含某种货物的数量,用Q 表示。

(3)订货间隔期:两次订货之间的时间间隔,用T 表示。

2.存贮模型的基本费用

(1)订货费:每组织一次生产、订货或采购的费用,通常认为与定购数量无关, 记为CD 。

(2)存贮费:所有用于存贮的全部费用,通常与存贮物品的多少和时间长短有关。 单位存贮费记为 CP。

(3)短缺损失费:由于物品短缺所产生的一切损失费用,通常与损失物品的多少 和短缺时间的长短有关,记为CS 。

3.存贮策略

所谓一个存贮策略,是指决定什么情况下对存贮进行补充,以及补充数量的多少。 下面是一些比较常见的存贮策略。

(1)t 循环策略:不论实际的存贮状态如何,总是每隔一个固定的时间t ,补充 一个固定的存贮量Q 。

(2)(t,S) 策略:每隔一个固定的时间 t 补充一次,补充数量以补足一个固定的 最大存贮量 S 为准。因此,每次补充的数量是不固定的,要视实际存贮量而定。当存贮(余额)为 I 时,补充数量为Q = S − I 。

(3)(s,S) 策略:当存贮(余额)为 I ,若 I > s ,则不对存贮进行补充;若 I ≤ s , 则对存贮进行补充,补充数量Q = S − I 。补充后达到最大存贮量 S 。s 称为订货点(或 保险存贮量、安全存贮量、警戒点等)。

在很多情况下,实际存贮量需要通过盘点才能 得知。若每隔一个固定的时间t 盘点一次,得知当时存贮 I ,然后根据 I 是否超过订货 点 s ,决定是否订货、订货多少,这样的策略称为(t,s,S)策略。

2 无约束的确定型存贮模型

我们首先考察经济订购批量存贮模型。 所谓经济订购批量存贮模型(economic ordering quantity, EOQ)是指不允许缺货、 货物生产(或补充)的时间很短(通常近似为 0)的模型。

2.1 模型一:不允许缺货,补充时间极短—基本的经济订购批量存贮模型

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值