DataStructure 课程笔记 数据结构基础fds

DataStructure 课程笔记 数据结构基础fds

from Miracle_Zero

chap02 Algorithm Analysis

T ( N ) = O ( f ( N ) ) T(N)=O(f(N)) T(N)=O(f(N)) T ( N ) ≤ c f ( N ) T(N)\leq c f(N) T(N)cf(N)
T ( N ) = Ω ( f ( N ) ) T(N)=\Omega(f(N)) T(N)=Ω(f(N)) T ( N ) ≥ c f ( N ) T(N)\geq c f(N) T(N)cf(N)
T ( N ) = Θ ( f ( N ) ) T(N)=\Theta(f(N)) T(N)=Θ(f(N)) T ( N ) = c f ( N ) T(N)= c f(N) T(N)=cf(N)
T ( N ) = o ( f ( N ) ) T(N)=o(f(N)) T(N)=o(f(N)) T ( N ) = O ( f ( N ) ) T(N)=O(f(N)) T(N)=O(f(N)) and T ( N ) ≠ Θ ( f ( N ) ) T(N)\neq\Theta(f(N)) T(N)=Θ(f(N))
  • log ⁡ k N = O ( N ) \log^kN=O(N) logkN=O(N): algorithm grows very slowly.

chap03 ADT-List

  • ADT 抽象数据类型

  • The cursor implementation is usually significantly faster because of the lack of memory management routines.

  • 链表:先放在前,后放在后

  • Add Two Polynomials

    • 多项式加法函数
  • Reverse Linked List

    • 单向链表转置
  • stack:后放在上

    • A Pop on an empty stack is an error in the stack ADT.

    • Push on a full stack is an implementation error but not an ADT error.

    struct  StackRecord {
    	int Capacity ; /* size of stack */
    	int TopOfStack; /* the top pointer */
    	/* ++ for push, -- for pop, -1 for empty stack */
    	ElementType *Array; /* array for stack elements */
     } ; 
    
    
  • The stack model must be well encapsulated(封装)

  • 表达式

    infix中序 a + b ∗ c − d / e a+b*c-d/e a+bcd/e
    prefix前序 − + a ∗ b c / d e -+a*bc/de +abc/de
    postfix后序 a b c ∗ + d e / − abc*+de/- abc+de/
  • 尾递归一定能变成循环

  • queue:两边开,先入先出,后入后出

    struct  QueueRecord {
    	int Capacity ;   /* max size of queue */
    	int Front;  /* 队列头预制0,指向最老元素 */
    	int Rear;   /* 队列尾预制-1,指向最新元素 */
    	int Size;  /* Optional - the current size of queue */
    	ElementType *Array;    /* array for queue elements */
     } ; 
    
  • 循环队列需要保留一个空位

  • Evaluate Postfix Expression

    • 后序表达式计算
  • Deque

    • 双向队列
  • Pop Sequence

    • 检查是否可以这样pop

chap04 Binary Tree& Search Tree

4.1 Binary Tree

  • There are N − 1 N-1 N1 edges in a tree with N N N nodes.
  • degree
    • of node: 有几个儿子
    • of tree: 树中拥有对多个儿子的节点的degree
  • length of path: 一路上有多少条边
  • D e p t h ( r o o t ) = 0 Depth(root) = 0 Depth(root)=0
  • H e i g h t ( l e a f ) = 0 Height(leaf) = 0 Height(leaf)=0
  • i i i层最多有节点 2 i − 1 2^{i-1} 2i1
  • 深度为 k k k的树最多有节点 2 k − 1 2^k-1 2k1
  • threaded binary trees 搜索二叉树,前序/中序/后续
    • 左指针指向遍历的前一个,右指针指向后一个

4.2 Search Tree

  • Binary Search Tree:左小右大,互不相同
  • Isomorphic
    • 树的对称
  • traversal
    • O(N)
    • 前序preorder
    • 中序inorder
    • 后序postorder
    • 层级level
  • ZigZagging on a Tree
  • Check BST
    • 判断是否为BST
    • 返回层数level
  • Binary Search Tree
    • 建立BST
    • 判断两BST是否一样
  • 线索二叉树
    • 记ptr指向二叉链表中的一个结点,以下是建立线索的规则:
      (1)如果ptr->lchild为空,则存放指向中序遍历序列中该结点的前驱结点。这个结点称为ptr的中序前驱;
      (2)如果ptr->rchild为空,则存放指向中序遍历序列中该结点的后继结点。这个结点称为ptr的中序后继;

chap05 Priority Queues

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5lzuYN7J-1593781323712)(C:\Users\ljy28\Desktop\学业\大二下\ds\review\DataStructure 笔记.assets\image-20200611232930754.png)]

  • 完全二叉树高为 h h h, 节点数 2 h 2^h 2h 2 h + 1 − 1 2^{h+1}-1 2h+11

  • h = ⌊ log ⁡ N ⌋ h=\lfloor \log N\rfloor h=logN

  • 最小堆/最大堆排序

    • 时间复杂度 log ⁡ 2 N \log_2 N log2N
  • d-heap

    • 每个节点有d个孩子
    • 时间复杂度 d log ⁡ d N d\log_dN dlogdN
    • i i i的父亲 ⌊ ( i + d − 2 ) / d ⌋ ⌊(i+d−2)/d⌋ (i+d2)/d, 第一个儿子$ (i−1)d+2 , 最 后 一 个 儿 子 , 最后一个儿子 , id+1$
  • Percolate Up and Down

  • Complete Binary Search Tree

    • 完全二叉搜索树建立
    • 树的前序遍历

chap06 Sort

img

6.1 Shellsort

void Shellsort( ElementType A[ ], int N ) 
{ 
    int  i, j, Increment; 
    ElementType  Tmp; 
    for ( Increment = N / 2; Increment > 0; Increment /= 2 )  
	/*h sequence */
	for ( i = Increment; i < N; i++ ) { /* insertion sort */
        Tmp = A[ i ]; 
	     for ( j = i; j >= Increment; j - = Increment ) 
             if( Tmp < A[ j - Increment ] ) 
                 A[ j ] = A[ j - Increment ];
        	else 
		      break; 
			A[ j ] = Tmp; 
	} /* end for-I and for-Increment loops */
}

第一次间隔为 ⌊ N / 2 ⌋ \lfloor N/2\rfloor N/2

后面每一次的间隔为前一次的一半

6.2 Heapsort

void Heapsort( ElementType A[ ], int N ) 
{  int i; 
    for ( i = N / 2; i >= 0; i - - ) /* BuildHeap */ 
        PercDown( A, i, N ); 
    for ( i = N - 1; i > 0; i - - ) { 
        Swap( &A[ 0 ], &A[ i ] ); /* DeleteMax */ 
        PercDown( A, 0, i ); 
    } 
}

6.3 Mergesort

  • 需要额外线性空间
  • O( N + N log N )次归并
void MSort( ElementType A[ ], ElementType TmpArray[ ], 
		int Left, int Right ) 
{   int  Center; 
    if ( Left < Right ) {  /* if there are elements to be sorted */
	Center = ( Left + Right ) / 2; 
	MSort( A, TmpArray, Left, Center ); 	/* T( N / 2 ) */
	MSort( A, TmpArray, Center + 1, Right ); 	/* T( N / 2 ) */
	Merge( A, TmpArray, Left, Center + 1, Right );  /* O( N ) */
    } 
} 

void Mergesort( ElementType A[ ], int N ) 
{   ElementType  *TmpArray;  /* need O(N) extra space */
    TmpArray = malloc( N * sizeof( ElementType ) ); 
    if ( TmpArray != NULL ) { 
	MSort( A, TmpArray, 0, N - 1 ); 
	free( TmpArray ); 
    } 
    else  FatalError( "No space for tmp array!!!" ); 
}

  • Iterative Mergesort
    • 归并排序,每归并一次输出一次

6.4 Quiksort

  • 找一个基准,然后从右到左找一个比基准大的,从左到右找一个比基准小的,交换,一轮结束后,基准左边再做快排,右边也做快排
  • 数量少的时候插入排序更快

6.5 Tablesort

In the worst case there are $\lfloor N/2\rfloor $ cycles and requires ⌊ 3 N / 2 ⌋ \lfloor 3N/2\rfloor 3N/2 record moves.

6.6 Bucketsort

  • 桶排序 O ( N ) O(N) O(N)

    1. 通常桶越多,执行效率越快,即省时间,但是桶越多,空间消耗就越大,是一种通过空间换时间的方式

    2. 桶排序的时间代价,假设有m个桶,则每个桶的元素为n/m;

      当辅助函数为冒泡排序 O ( n 2 ) O(n2) O(n2)时,桶排序为 O ( n ) + m O ( ( n / m ) 2 ) O(n)+mO((n/m)2) O(n)+mO((n/m)2);

      当辅助函数为快速排序时 O ( n l g n ) O(nlgn) O(nlgn)时,桶排序为 ∗ O ( n ) + m O ( n / m l o g ( n / m ) ) *O(n)+mO(n/m log(n/m)) O(n)+mO(n/mlog(n/m))

    3. 每个桶存储区间内的元素*(区间为半开区间例如[0,10)或者[200,300) )*

    4. 根据数据规模n划分,m个相同大小的区间 (每个区间为一个桶,桶可理解为容器)

6.7 Insertionsort

  • inversion: pair ( i, j ) having the property that i < j but A[i] > A[j]

chap7 Hashing & Rehashing

  • Hashing collision: Two elements with different keys share the same hash value

chap8 Union-find

  • 不做优化的话最差时间复杂度是线性的

  • union by size/union by height

    • 用于如何合并两棵树的判断,小的成为大的的儿子/矮的成为高的的儿子
  • union by size

    • S [ r o o t ] = − s i z e S[root]=-size S[root]=size
    • N次插入M次搜索时间复杂度 O ( N + M log ⁡ 2 N ) O(N+M\log_2N) O(N+Mlog2N)
  • n个元素m个关系,至少n-m个等价类

  • File Transfer

    • 寻找根
    • union by size
    • check是否联通

chap9 Graph

9.1 Graph definition

  • G ( V , E ) G(V,E) G(V,E)

    • G: Graph
    • V = V ( G ) V=V(G) V=V(G): 有限非空顶点集合
    • E = E ( G ) E=E(G) E=E(G): 有限边集合
    • 不允许自成环
  • G 1 ⊂ G = V ( G 1 ) ⊂ V ( G ) & & E ( G 1 ) ⊂ E ( G ) G_1\subset G=V(G_1)\subset V(G)\&\&E(G_1)\subset E(G) G1G=V(G1)V(G)&&E(G1)E(G)

  • connect graph:每个点到任一点都有通路

  • component of an undirected G: 最大连接子图

  • 强连通图

    有向图中,若任意两个顶点 Vi 和 Vj,满足从 Vi 到 Vj 以及从 Vj 到 Vi 都连通,也就是都含有至少一条通路,则称此有向图为强连通图。

  • 若有向图本身不是强连通图,但其包含的最大连通子图具有强连通图的性质,则称该子图为强连通分量

  • d e g r e e ( V ) degree(V) degree(V)顶点周围边的条数

    • n顶点e边: ∑ i = 0 n − 1 d e g r e e ( v i ) / 2 = e \sum_{i=0}^{n-1}degree(v_i)/2=e i=0n1degree(vi)/2=e
  • Adjacency Matrix邻接矩阵

  • Adjacency List邻接链表

9.2 Topological sort

  • AOV network: 有向不循环图
  • if a project is feasible, it must be irreflexive
    • irreflexive: 存在i到j有通路但无边
  • 拓扑排序不唯一
  • Is Topological Order
    • 拓扑排序的判断

9.3 Shortest path

  • If there is no negative-cost cycle, the shortest path from s to s is defined to be 0
  • T = O ( ∣ V ∣ + ∣ E ∣ ) T = O( |V| + |E| ) T=O(V+E)
  • Shortest Path [3]
    • 最短路径条数+最短路径长度
  • Shortest Path [4]
    • 最短路径长度+最短路径上终点前的节点

9.4 Network flow

  • 最大流算法
    • 找当前节点上最大的路径
      • network.c dinic算法
      • Universal Travel Sites

9.5 Minimum Spanning Tree

  • 边数=顶点数-1

9.6 MST

9.7 DFS

  • 欧拉回路
    • An Euler tour is possible if there are exactly two vertices having odd degree. One must start at one of the odd-degree vertices.
    • 欧拉通路、欧拉回路、欧拉图
      无向图:
      1. 设G是连通无向图,则称经过G的每条边一次并且仅一次的路径为欧拉通路;
      2. 如果欧拉通路是回路(起点和终点是同一个顶点),则称此回路为欧拉回路(Euler circuit);
      3. 具有欧拉回路的无向图G称为欧拉图(Euler graph)。
        有向图:
      4. 设D是有向图,D的基图连通,则称经过D的每条边一次并且仅一次的有向路径为有向欧拉通路;
      5. 如果有向欧拉通路是有向回路,则称此有向回路为有向欧拉回路(directed Euler circuit);
      6. 具有有向欧拉回路的有向图D称为有向欧拉图(directed Euler graph)。
    1. 定理及推论
      欧拉通路和欧拉回路的判定是很简单的,请看下面的定理及推论。
      定理5.1 无向图G存在欧拉通路的充要条件是:G为连通图,并且G仅有两个奇度结点(度数为奇数的顶点)或者无奇度结点。
      推论5.1:
    1. 当G是仅有两个奇度结点的连通图时,G的欧拉通路必以此两个结点为端点。
    2. 当G是无奇度结点的连通图时,G必有欧拉回路。
    3. G为欧拉图(存在欧拉回路)的充分必要条件是G为无奇度结点的连通图。
      定理5.2 有向图D存在欧拉通路的充要条件是:
      D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度
      与入度之差为-1。
      推论5.2:
    4. 当D除出、入度之差为1,-1的两个顶点之外,其余顶点的出度与入度都相等时,D的有向欧拉通路必以出、入度之差为1的顶点作为始点,以出、入度之差为-1的顶点作为终点。
    5. 当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。
    6. 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。
    1. 欧拉回路的应用
      欧拉回路最著名的有三个应用,大家可以网上百度一下,这里不详述。
      哥尼斯堡七桥问题
      一笔画问题。
      旋转鼓轮的设计
      4.欧拉回路的判定
      判断欧拉路是否存在的方法
      有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。
      无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。
      判断欧拉回路是否存在的方法
      有向图:图连通,所有的顶点出度=入度。
      无向图:图连通,所有顶点都是偶数度。
  • Strongly Connected Components
    • 寻找回路

所有顶点的出、入度都相等时,D中存在有向欧拉回路。
3) 有向图D为有向欧拉图的充分必要条件是D的基图为连通图,并且所有顶点的出、入度都相等。
3. 欧拉回路的应用
欧拉回路最著名的有三个应用,大家可以网上百度一下,这里不详述。
哥尼斯堡七桥问题
一笔画问题。
旋转鼓轮的设计
4.欧拉回路的判定
判断欧拉路是否存在的方法
有向图:图连通,有一个顶点出度大入度1,有一个顶点入度大出度1,其余都是出度=入度。
无向图:图连通,只有两个顶点是奇数度,其余都是偶数度的。
判断欧拉回路是否存在的方法
有向图:图连通,所有的顶点出度=入度。
无向图:图连通,所有顶点都是偶数度。

  • Strongly Connected Components
    • 寻找回路
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值