【pytorch】过拟合和欠拟合详解,并以三阶多项式函数绘图举例 (附pytorch.cat的用法)

一、欠拟合、过拟合解释

  • 训练误差(training error)指模型在训练数据集上表现出的误差。
  • 泛化误差(generalization error)指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。
  • 欠拟合(underfitting):模型无法得到较低的训练误差的现象。
  • 过拟合(overfitting):模型的训练误差远小于它在测试数据集上的误差的现象。
  • 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,但是最重要的是模型复杂度和训练数据集大小。
  • 模型复杂度越高,训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,越容易过拟合。模型复杂度越低,越容易欠拟合。

在这里插入图片描述

二、绘制三阶多项式函数拟合,过拟合,欠拟合曲线

(1)torch.cat的用法(后面会用到)

  • dim=0则按列拼接,dim=1则按行拼接
import torch

a = torch.ones(3, 3)
b = torch.zeros(2, 3)
c = torch.cat((a, b), dim=0)
print(c)
  • 结果
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [0., 0., 0.],
        [0., 0., 0.]])

(2)绘制拟合曲线

1)代码
import matplotlib.pyplot as plt
import numpy as np
import torch
from IPython import display


def use_svg_display():
    """Use svg format to display plot in jupyter"""
    display.set_matplotlib_formats('svg')


def set_figsize(figsize=(3.5, 2.5)):
    use_svg_display()
    # 设置图的尺寸
    plt.rcParams['figure.figsize'] = figsize


def semilogy(x_vals, y_vals, x_label, y_label, x2_vals=None, y2_vals=None,
             legend=None, figsize=(3.5, 2.5)):
    set_figsize(figsize)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    # 画折线图,semilogy表示y坐标用指数表示,semilogx坐标用指数表示
    plt.semilogy(x_vals, y_vals)
    if x2_vals and y2_vals:
        plt.semilogy(x2_vals, y2_vals, linestyle=':')
        # 添加图例
        plt.legend(legend)
    plt.show()


def fit_and_plot(train_features, test_features, train_labels, test_labels):
    net = torch.nn.Linear(train_features.shape[-1], 1)
    # 通过Linear文档可知,pytorch已经将参数初始化了,所以我们这里就不手动初始化了
    # 10 10 2
    batch_size = min(10, train_labels.shape[0])
    # 100x3 100
    dataset = torch.utils.data.TensorDataset(train_features, train_labels)
    train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)

    optimizer = torch.optim.SGD(net.parameters(), lr=0.01)
    train_ls, test_ls = [], []
    for _ in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y.view(-1, 1))
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
        # 100x1
        train_labels = train_labels.view(-1, 1)
        test_labels = test_labels.view(-1, 1)
        train_ls.append(loss(net(train_features), train_labels).item())
        test_ls.append(loss(net(test_features), test_labels).item())
    print('final epoch: train loss', train_ls[-1], 'test loss', test_ls[-1])
    semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss',
             range(1, num_epochs + 1), test_ls, ['train', 'test'])
    print('weight:', net.weight.data,
          '\nbias:', net.bias.data)


if __name__ == '__main__':
    n_train, n_test, true_w, true_b = 100, 100, [1.2, -3.4, 5.6], 5
    features = torch.randn((n_train + n_test, 1))
    num_epochs, loss = 100, torch.nn.MSELoss()
    # 200x3
    poly_features = torch.cat((features, torch.pow(features, 2), torch.pow(features, 3)), 1)
    labels = (true_w[0] * poly_features[:, 0] + true_w[1] * poly_features[:, 1]
              + true_w[2] * poly_features[:, 2] + true_b)
    # 200
    labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    fit_and_plot(poly_features[:n_train, :], poly_features[n_train:, :], labels[:n_train], labels[n_train:])
    fit_and_plot(features[:n_train, :], features[n_train:, :], labels[:n_train], labels[n_train:])
    fit_and_plot(poly_features[0:2, :], poly_features[n_train:, :], labels[0:2], labels[n_train:])

2)结果
final epoch: train loss 9.381109703099355e-05 test loss 0.0001090286677936092
weight: tensor([[ 1.1943, -3.3993,  5.6010]]) 
bias: tensor([4.9978])
final epoch: train loss 145.16329956054688 test loss 173.38833618164062
weight: tensor([[17.9973]]) 
bias: tensor([1.9011])
final epoch: train loss 3.03792667388916 test loss 9.147336959838867
weight: tensor([[ 1.1994, -3.1014,  4.9920]]) 
bias: tensor([2.4698])
  • 三阶多项式函数拟合
    在这里插入图片描述

  • 欠拟合
    在这里插入图片描述

  • 过拟合
    在这里插入图片描述

三、参考

统计学习理论之VC维究竟是什么
动手学深度学习(pytorch版)

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch过拟合通常发生在模型训练时,模型在训练集上表现良好,但在测试集或新的数据上表现不佳。这种现象可能是由于模型过于复杂、数据集过小、训练次数过多等原因造成的。 下面是一些减轻PyTorch过拟合的常见方法: 1. 更多的数据:增加训练集数据量可以减少过拟合的风险。如果无法获得更多的真实数据,可以考虑使用数据增强技术来扩充训练集,如随机裁剪、翻转、旋转等。 2. 简化模型:过于复杂的模型容易记住训练集中的噪声,从而导致过拟合。可以通过减少模型的层数、节点数或使用正则化技术(如L1、L2正则化)来简化模型。 3. 正则化:正则化是通过在损失函数中添加一个正则化项来限制模型参数的大小。常见的正则化技术包括L1正则化和L2正则化。它们有助于防止模型对训练数据过拟合。 4. 早停法:通过监控模型在验证集上的性能,在性能不再提升时停止训练,可以防止模型过度拟合训练集。 5. Dropout:Dropout是一种正则化技术,通过在训练过程中随机丢弃一部分节点的输出来减少模型复杂度。这样可以防止某些特定的节点过拟合训练数据。 6. 批标准化:批标准化是一种在深度神经网络中常用的正则化技术,通过对每个批次的输入进行标准化来减少内部协变量偏移,有助于提高模型的泛化性能。 以上是一些常见的方法来减轻PyTorch模型的过拟合问题。根据具体情况选择合适的方法,可以有效提高模型的泛化能力。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值