三次样条曲线(Cubic Spline Interpolation)和三次多项式曲线(Cubic Polynomial Interpolation)是不同的插值算法。虽然它们都使用三次多项式,但它们的应用和构造方式有所不同。以下是对这两种算法的详细解释:
三次样条曲线(Cubic Spline Interpolation)
三次样条曲线是一种分段插值方法,它使用多个三次多项式在不同区间进行插值。这些多项式在已知数据点处连接,确保整个插值曲线是光滑且连续的。
特点
- 分段多项式:每个区间使用一个不同的三次多项式。
- 连续性:不仅要求插值曲线在数据点处连续,还要求其一阶和二阶导数在数据点处连续。
- 自由度较小:通过设置这些连续性条件,样条插值的问题变成了求解一个线性方程组,这样可以减少过拟合的风险。
构造方法
对于每个区间 [xi,xi+1][x_i, x_{i+1}][xi,xi+1],构造一个三次多项式: Si(x)=ai(x−xi)3+bi(x−xi)2+ci(x−xi)+diS_i(x) = a_i (x - x_i)^3 + b_i (x - x_i)^2 + c_i (x - x_i) + d_iSi(x)=ai(x−xi)3+bi(x−xi)2+ci(x−xi)+di
这些多项式需要满足以下条件:
- 在每个数据点处函数值连续:Si(xi+1)=Si+1(xi+1)S_i(x_{i+1}) = S_{