from sympy import symbols, satisfiable
# sympy中的逻辑运算符:~否定,&合取,|析取,!=异或,>>蕴含,==等价
# 证明题 A->B, B->C |= A->C
# 定义符号变量
p, q, r = symbols('p q r')
# 定义命题逻辑表达式
exp1 = p >> q #p->q
exp2 = q >> r #q->r
exp3 = p >> r #p->r
# 求解使得前提条件成立的所有解
# 若前提公式集合满足的所有解,也满足结论,则推论成立
# 若前提公式集合无解,则由于错误前提可推论出任意结论,则推论成立
# 否则,推论不成立
canDeduce = True
models = satisfiable(exp1 & exp2, all_models=True) #可满足解
if models:
rst = list(models)
for dv in rst:
print( dv ) #一行数据,如:{q: False, p: False, r: True}
val = exp3.subs(dv) #把真值赋值字典代入exp3求解
if val == False:
canDeduce = False
break
print('推论' + ('' if canDeduce else '不') + '成立')
上述代码,通过求解前提公式集合的可满足解,并代入结论公式,以验证从前提公式集合到结论公式间的同时成立性,以证明问题.