Missaya的博客

众里寻他千百度

tensorflow(十三)seq2seq.py文件源码解析(上)

一、前言 自从接触并学习tensorflow框架之后,总是会遇到很多莫名奇妙的报错信息。而网上又很少有相似的问题的解决方案。因此很久之前就想学一下tendorflow的源码,能够深层次的理解tensorflow这个框架。但是由于一些原因耽搁了。现在正式开始研究tensorflow源码,由于要参加...

2018-05-28 14:16:35

阅读数:129

评论数:0

tensorflow(十二)利用seq2seq的Decoder-Encoder机制实现序列生成模型(下)

本文为利用seq2seq实现单词序列转换的代码,开发环境为jupyter,tensorflow版本为1.2.1 实验数据和程序文件见链接:https://pan.baidu.com/s/1YDkaQFvWuKN8KAT1aQ4Z0A 一、预处理 1、引入必要的包 打开sourc...

2018-05-28 14:15:07

阅读数:201

评论数:0

tensorflow(十一)--利用seq2seq的Decoder-Encoder机制实现序列生成模型(上)

前言: 由于本社群打算组队参加京东的多轮对话系统挑战赛,比赛内容主要是做一款功能强大的聊天机器人,由于之前一直都是在做视觉,而seq2seq又是聊天机器人不可或缺的,因此打算学一下nlp的东西。(PS:大佬们如果对比赛感兴趣的,可以联系群主。) 一、初识 seq2seq 即“Sequen...

2018-05-28 14:13:53

阅读数:180

评论数:0

tensorflow(十)生成式对抗网络(GAN)下篇----tensorflow实现

本文接上一篇博文: 一、程序代码 程序主要实现上篇文章中所提到的随机噪声拟合高斯分布的过程,话不多说,直接上代码: #引入必要的包 import argparse import numpy as np from scipy.stats import nor...

2018-05-09 12:30:05

阅读数:225

评论数:0

tensorflow(九)生成式对抗网络(GAN)上篇----简介与算法原理

一、简介 生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。 模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Mo...

2018-05-09 12:25:53

阅读数:197

评论数:0

tensorflow(八)tensorflow加载VGG19模型数据并可视化每一层的输出

一、简介 VGG网络在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名。VGG网络非常深,通常有16-19层,如果自己训练网络模型的话很浪费时间和计算资源。因此这里采用一种方法获取VGG19模型的模型数据,从而能够更快...

2018-05-09 12:20:09

阅读数:2025

评论数:4

提示
确定要删除当前文章?
取消 删除
关闭
关闭