Missaya的博客

众里寻他千百度

排序:
默认
按更新时间
按访问量

tensorflow(六)训练分类自己的图片(CNN超详细入门版)

之前一直用caffe做图像方面的东西,由于tensorflow环境配置简单,综合表现较为出色,因此打算转战tensorflow。学习这个框架,最开始还是要跑一跑文档中的mnist小程序(具体请参照tensorflow官方文档)。但是mnist中都是处理好的数据,具体的数据处理过程又没有讲,如果想要...

2018-01-21 13:47:09

阅读数:19450

评论数:71

RPN层解析

https://blog.csdn.net/sloanqin/article/details/51545125

2018-08-10 12:15:37

阅读数:30

评论数:0

Docker概念及操作命令细节(带详细实际操作截图)

由于在公司最近要用服务器上的GPU装caffe进行开发,但是没有管理员权限,又怕自己装环境把整体的环境弄乱了,因此便打算使用docker来进行开发工作。 概念 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源。 Docker 可以让开发者打包他们的...

2018-08-09 17:56:36

阅读数:171

评论数:0

caffe源码理解之inner_product_layer

原文地址:https://www.cnblogs.com/dupuleng/articles/4312149.html 在caffe中所谓的Inner_Product(IP) 层即fully_connected (fc)layer,为什么叫ip呢,可能是为了看起来比较优雅吧。。 从CAFFE_...

2018-08-02 15:52:08

阅读数:25

评论数:0

caffe中各个层——解析

原文地址:http://www.cnblogs.com/denny402/p/5071126.html 所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vis...

2018-08-02 15:15:00

阅读数:84

评论数:0

Google机器学习术语表

https://developers.google.cn/machine-learning/glossary/?hl=zh-CN

2018-08-01 12:12:17

阅读数:21

评论数:0

Faster RCNN

贴上两篇非常好的博客: https://blog.csdn.net/lanran2/article/details/54376126 https://blog.csdn.net/hunterlew/article/details/71075925 https://blog.csdn.net/...

2018-07-27 16:48:19

阅读数:31

评论数:0

自然场景文本处理论文整理 (5)Detecting Curve Text in the Wild: New Dataset and New Solution

paper:https://arxiv.org/abs/1712.02170 github:https://github.com/Yuliang-Liu/Curve-Text-Detector 一、摘要 为了提出在野外阅读曲线文本的问题,在本文中,我们构建了一个名为CTW1500的曲线文本数...

2018-07-26 14:37:15

阅读数:124

评论数:0

Fast R-CNN

这里贴上两篇讲解比较详细的文章,作为记录 https://blog.csdn.net/WoPawn/article/details/52463853?locationNum=5 https://blog.csdn.net/wonder233/article/details/53671018

2018-07-24 14:59:47

阅读数:35

评论数:0

自然场景文本处理论文整理 (4)PixelLink

摘要 大多数最先进的场景文本检测算法是基于深度学习的方法,其依赖于边界框回归并且执行至少两种预测:文本/非文本分类和位置回归。回归在这些方法中获取边界框中起着关键作用,但它不是必不可少的,因为文本/非文本预测也可以被视为一种包含完整位置信息的语义分割。然而,场景图像中的文本实例通常彼此非常接近,...

2018-07-23 17:23:34

阅读数:254

评论数:0

自然场景文本处理论文整理(3)Mask TextSpotter

这篇论文是2018年7月6号出来的,对于任意形状的自然文本检测识别效果非常好。 paper:https://arxiv.org/abs/1807.02242 目前无相关源码 1.摘要简介 在本文中,我们提出了一个名为Mask TextSpotter的文本监视器,它可以检测和识别任意形状的文...

2018-07-23 16:51:45

阅读数:348

评论数:0

自然场景文本处理论文整理(1)Spatial Transformer Networks

paper:Spatial Transformer Networks 在Theano框架中,STN算法已经被封装成API,可以直接调用。tensorflow实现见文章最后。 1、空间变换器的结构: 这是一个可微分的模块,它在单个前向传递期间将空间变换应用于要素图,其中变换以特定输入为条件...

2018-07-20 11:03:10

阅读数:86

评论数:0

自然场景文本处理论文整理(2)STN-OCR

今天是进入公司实习的第三周了,在小组内负责的工作主要是和自然场景文本检测相关的内容。这里把看过的论文做一下翻译和整理,也方便自己日后查看。 Paper:STN-OCR: A single Neural Network for Text Detection and Text Recognition...

2018-07-19 17:52:19

阅读数:148

评论数:0

tensorflow(十三)seq2seq.py文件源码解析(上)

一、前言 自从接触并学习tensorflow框架之后,总是会遇到很多莫名奇妙的报错信息。而网上又很少有相似的问题的解决方案。因此很久之前就想学一下tendorflow的源码,能够深层次的理解tensorflow这个框架。但是由于一些原因耽搁了。现在正式开始研究tensorflow源码,由于要参加...

2018-05-28 14:16:35

阅读数:100

评论数:0

tensorflow(十二)利用seq2seq的Decoder-Encoder机制实现序列生成模型(下)

本文为利用seq2seq实现单词序列转换的代码,开发环境为jupyter,tensorflow版本为1.2.1 实验数据和程序文件见链接:https://pan.baidu.com/s/1YDkaQFvWuKN8KAT1aQ4Z0A 一、预处理 1、引入必要的包 打开sourc...

2018-05-28 14:15:07

阅读数:115

评论数:0

tensorflow(十一)--利用seq2seq的Decoder-Encoder机制实现序列生成模型(上)

前言: 由于本社群打算组队参加京东的多轮对话系统挑战赛,比赛内容主要是做一款功能强大的聊天机器人,由于之前一直都是在做视觉,而seq2seq又是聊天机器人不可或缺的,因此打算学一下nlp的东西。(PS:大佬们如果对比赛感兴趣的,可以联系群主。) 一、初识 seq2seq 即“Sequen...

2018-05-28 14:13:53

阅读数:126

评论数:0

tensorflow(十)生成式对抗网络(GAN)下篇----tensorflow实现

本文接上一篇博文: 一、程序代码 程序主要实现上篇文章中所提到的随机噪声拟合高斯分布的过程,话不多说,直接上代码: #引入必要的包 import argparse import numpy as np from scipy.stats import nor...

2018-05-09 12:30:05

阅读数:199

评论数:0

tensorflow(九)生成式对抗网络(GAN)上篇----简介与算法原理

一、简介 生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。 模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Mo...

2018-05-09 12:25:53

阅读数:150

评论数:0

tensorflow(八)tensorflow加载VGG19模型数据并可视化每一层的输出

一、简介 VGG网络在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名。VGG网络非常深,通常有16-19层,如果自己训练网络模型的话很浪费时间和计算资源。因此这里采用一种方法获取VGG19模型的模型数据,从而能够更快...

2018-05-09 12:20:09

阅读数:1226

评论数:3

tensorflow(七)实现mnist数据集上图片的训练和测试

本文使用tensorflow实现在mnist数据集上的图片训练和测试过程,使用了简单的两层神经网络,代码中涉及到的内容,均以备注的形式标出。 关于文中的数据集,大家如果没有下载下来,可以到我的网盘去下载,链接如下: https://pan.baidu.com/s/1KU_YZhouwk0h9M...

2018-04-28 16:55:45

阅读数:229

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭