之前一直用caffe做图像方面的东西,由于tensorflow环境配置简单,综合表现较为出色,因此打算转战tensorflow。学习这个框架,最开始还是要跑一跑文档中的mnist小程序(具体请参照tensorflow官方文档)。但是mnist中都是处理好的数据,具体的数据处理过程又没有讲,如果想要处理自己的图片数据,便有些无从下手,直接看源码的话又比较枯燥晦涩。这里是一份从图片的预处理到最终测试一张单独图片的完整的代码,供大家参考。由于一些原因,数据集不能发到网上,大概就是一个具有五种类型图片的数据集。
这里我把整个工程文件放上来:https://pan.baidu.com/s/1SSB8U2-DIqmUsgsI0BRVVw
其中log下是训练好的模型,可以直接运行程序,如果想要自己训练模型,可以把log文件夹删掉,然后讲代码最后测试图片的部分注释掉,再在最后加上一行run_training()调用训练函数即可。
这里由于只有很少的图片,很少的训练次数,因此测试结果不是很理想,大家可以增加大量的数据和增加训练次数来改善测试结果。
(PS:需要百度内推的可以加我好友~ v:f1979446971)
一:数据预处理
import os
import numpy as np
from PIL import Image
import tensorflow as tf
import matplotlib.pyplot as plt
#导入必要的包
train_dir = 'D:/picture/train/'
#存放用来训练的图片的路径
def get_files(file_dir):
A5 = []
label_A5 = []
A6 = []
label_A6 = []
SEG = []
label_SEG = []
SUM = []
label_SUM = []
LTAX1 = []
label_LTAX1 = []
#定义存放各类别数据和对应标签的列表,列表名对应你所需要分类的列别名
#A5,A6等是我的数据集中要分类图片的名字
for file in os.listdir(file_dir):
name = file.split(sep='.')
if name[0]=='A5':
A5.append(file_dir+file)
label_A5.append(0)
elif name[0] == 'A6':
A6.append(file_dir+file)
label_A6.append(1)
elif name[0]=='LTAX1':
LTAX1.append(file_dir+file)
label_LTAX1.append(2)
elif name[0] == 'SEG':
SEG.append(file_dir+file)
label_SEG.append(3)
else:
SUM.append(file_dir+file)
label_SUM.append(4)
#根据图片的名称,对图片进行提取,这里用.来进行划分
###这里一定要注意,如果是多分类问题的话,一定要将分类的标签从0开始。这里是五类,标签为0,1,2,3,4。我之前以为这个标签应该是随便设置的,结果就出现了Target[0] out of range的错误。
print('There are %d A5\nThere are %d A6\nThere are %d LTAX1\nThere are %d SEG\nThere are %d SUM' \
%(len(A5),len(A6),len(LTAX1),len(SEG),len(SUM)))
#打印出提取图片的情况,检测是否正确提取
image_list = np.hstack((A5,A6,LTAX1,SEG,SUM))
label_list = np.hstack((label_A5,label_A6,label_LTAX1,label_SEG,label_SUM))
#用来水平合并数组
temp = np.array([image_list,label_list])
temp = temp.transpose()
np.random.shuffle(temp)
image_list = list(temp[:,0])
label_list = list(temp[:,1])
label_list = [int(i) for i in label_list]
return image_list,label_list
#返回两个list
def get_batch(image,label,image_W,image_H,batch_size,capacity):
image = tf.cast(image,tf.string)
label = tf.cast(label,tf.int32)
#tf.cast()用来做类型转换
input_queue = tf.train.slice_input_producer([image,label])
#加入队列
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents,channels=3)
#jpeg或者jpg格式都用decode_jpeg函数,其他格式可以去查看官方文档
image = tf.image.resize_image_with_crop_or_pad(image,image_W,image_H)
#resize
image = tf.image.per_image_standardization(image)
#对resize后的图片进行标准化处理
image_batch,label_batch = tf.train.batch([image,label],batch_size = batch_size,num_threads=16,capacity = capacity)
label_batch = tf.reshape(label_batch,[batch_size])
return image_batch,label_batch
#获取两个batch,两个batch即为传入神经网络的数据
对预处理的数据进行可视化,查看预处理的效果
BATCH_SIZE = 5
CAPACITY = 64
IMG_W = 208
IMG_H = 208
train_dir = 'D:/picture/train/'
image_list,label_list = get_files(train_dir)
image_batch,label_batch = get_batch(image_list,label_list,IMG_W,IMG_H,BATCH_SIZE,CAPACITY)
with tf.Session() as sess:
i=0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord = coord)
try:
while not coord.should_stop() and i<2:
#提取出两个batch的图片并可视化。
img,label = sess.run([image_batch,label_batch])
for j in np.arange(BATCH_SIZE):
print('label: %d'%label[j])
plt.imshow(img[j,:,:,:])
plt.show()
i+=1
except tf.errors.OutOfRangeError:
print('done!')
finally:
coord.request_stop()
coord.join(threads)
**
二、设计神经网络模型
在设计神经网络的过程中,一定要对每一层的数据流动比较了解,弄清楚图片size的变化,不然会报错。
在进行测试网络模型的过程中,如果用的是IPython的话,要经常重新启动kernel,不然会出现conv1等层scope已经定义的错误。刚开始的时候这个问题困扰了很久,以为是定义变量作用域的过程中,语法使用错误,后来才知道是需要重新启动kernel。具体其中的原因我也不太清楚。
**
def inference(images, batch_size, n_classes):
# conv1, shape = [kernel_size, kernel_size, channels, kernel_numbers]
with tf.variable_scope("conv1") as scope:
weights = tf.get_variable("weights",
shape=[3, 3, 3, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable("biases",
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding="SAME")
pre_activation = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(pre_activation, name="conv1")
# pool1 && norm1
with tf.variable_scope("pooling1_lrn") as scope:
pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding="SAME", name="pooling1")
norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75, name='norm1')
# conv2
with tf.variable_scope("conv2") as scope:
weights = tf.get_variable("weights",
shape=[3, 3, 16, 16],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32))
biases = tf.get_variable("biases",
shape=[16],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding="SAME")
pre_activation = tf.nn.bias_add(conv, biases)
conv2 = tf.nn.relu(pre_activation, name="conv2")
# pool2 && norm2
with tf.variable_scope("pooling2_lrn") as scope:
pool2 = tf.nn.max_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
padding="SAME", name="pooling2")
norm2 = tf.nn.lrn(pool2, depth_radius=4, bias=1.0, alpha=0.001/9.0,
beta=0.75, name='norm2')
# full-connect1
with tf.variable_scope("fc1") as scope:
reshape = tf.reshape(norm2, shape=[batch_size, -1])
dim = reshape.get_shape()[1].value
weights = tf.get_variable("weights",
shape=[dim, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases",
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name="fc1")
# full_connect2
with tf.variable_scope("fc2") as scope:
weights = tf.get_variable("weights",
shape=[128, 128],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases",
shape=[128],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
fc2 = tf.nn.relu(tf.matmul(fc1, weights) + biases, name="fc2")
# softmax
with tf.variable_scope("softmax_linear") as scope:
weights = tf.get_variable("weights",
shape=[128, n_classes],
dtype=tf.float32,
initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32))
biases = tf.get_variable("biases",
shape=[n_classes],
dtype=tf.float32,
initializer=tf.constant_initializer(0.1))
softmax_linear = tf.add(tf.matmul(fc2, weights), biases, name="softmax_linear")
return softmax_linear
def losses(logits, labels):
with tf.variable_scope("loss") as scope:
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=labels, name="xentropy_per_example")
loss = tf.reduce_mean(cross_entropy, name="loss")
tf.summary.scalar(scope.name + "loss", loss)
return loss
def trainning(loss, learning_rate):
with tf.name_scope("optimizer"):
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
global_step = tf.Variable(0, name="global_step", trainable=False)
train_op = optimizer.minimize(loss, global_step=global_step)
return train_op
def evaluation(logits, labels):
with tf.variable_scope("accuracy") as scope:
correct = tf.nn.in_top_k(logits, labels, 1)
correct = tf.cast(correct, tf.float16)
accuracy = tf.reduce_mean(correct)
tf.summary.scalar(scope.name + "accuracy", accuracy)
return accuracy
N_CLASSES = 5
#要分类的类别数,这里是5分类
IMG_W = 208
IMG_H = 208
#设置图片的size
BATCH_SIZE = 8
CAPACITY = 64
MAX_STEP = 1000
#迭代一千次,如果机器配置好的话,建议至少10000次以上
learning_rate = 0.0001
#学习率
**
三、训练
**
def run_training():
train_dir = 'D:/picture/train/'
logs_train_dir = 'D:/picture/log/'
#存放一些模型文件的目录
train,train_label = get_files(train_dir)
train_batch,train_label_batch = get_batch(train,train_label,
IMG_W,
IMG_H,
BATCH_SIZE,
CAPACITY)
train_logits =inference(train_batch,BATCH_SIZE,N_CLASSES)
train_loss = losses(train_logits,train_label_batch)
train_op = trainning(train_loss,learning_rate)
train_acc = evaluation(train_logits,train_label_batch)
summary_op = tf.summary.merge_all()
sess = tf.Session()
train_writer = tf.summary.FileWriter(logs_train_dir,sess.graph)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess = sess,coord = coord)
try:
for step in np.arange(MAX_STEP):
if coord.should_stop():
break
_,tra_loss,tra_acc = sess.run([train_op,train_loss,train_acc])
if step % 50 == 0:
print('Step %d,train loss = %.2f,train occuracy = %.2f%%'%(step,tra_loss,tra_acc))
#每迭代50次,打印出一次结果
summary_str = sess.run(summary_op)
train_writer.add_summary(summary_str,step)
if step % 200 ==0 or (step +1) == MAX_STEP:
checkpoint_path = os.path.join(logs_train_dir,'model.ckpt')
saver.save(sess,checkpoint_path,global_step = step)
#每迭代200次,利用saver.save()保存一次模型文件,以便测试的时候使用
except tf.errors.OutOfRangeError:
print('Done training epoch limit reached')
finally:
coord.request_stop()
coord.join(threads)
sess.close()
**
四、测试一张图片
**
def get_one_image(img_dir):
image = Image.open(img_dir)
#Image.open()
#好像一次只能打开一张图片,不能一次打开一个文件夹,这里大家可以去搜索一下
plt.imshow(image)
image = image.resize([208, 208])
image_arr = np.array(image)
return image_arr
def test(test_file):
log_dir = 'D:/picture/log/'
image_arr = get_one_image(test_file)
with tf.Graph().as_default():
image = tf.cast(image_arr, tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.reshape(image, [1,208, 208, 3])
print(image.shape)
p = inference(image,1,5)
logits = tf.nn.softmax(p)
x = tf.placeholder(tf.float32,shape = [208,208,3])
saver = tf.train.Saver()
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path:
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
saver.restore(sess, ckpt.model_checkpoint_path)
#调用saver.restore()函数,加载训练好的网络模型
print('Loading success')
else:
print('No checkpoint')
prediction = sess.run(logits, feed_dict={x: image_arr})
max_index = np.argmax(prediction)
print('预测的标签为:')
print(max_index)
print('预测的结果为:')
print(prediction)
if max_index==0:
print('This is a LTAX with possibility %.6f' %prediction[:, 0])
elif max_index == 1:
print('This is a SUM with possibility %.6f' %prediction[:, 1])
elif max_index == 2:
print('This is a A5 with possibility %.6f' %prediction[:, 2])
elif max_index == 3:
print('This is a A6 with possibility %.6f' %prediction[:, 3])
else :
print('This is a SEG with possibility %.6f' %prediction[:, 4])
调用test函数测试图片的预测结果。
test('D:\\picture\\test\\A51.jpeg')
test('D:\\picture\\test\\A52.jpeg')
test('D:\\picture\\test\\A61.jpeg')
test('D:\\picture\\test\\A62.jpeg')
test('D:\\picture\\test\\LTAX1.jpeg')
test('D:\\picture\\test\\LTAX2.jpeg')
test('D:\\picture\\test\\SEG1.jpg')
test('D:\\picture\\test\\SEG2.jpg')
test('D:\\picture\\test\\SUM1.jpeg')
test('D:\\picture\\test\\SUM2.jpeg')