mnist手写数字识别

本文记录了作者参加CSDN学习挑战赛的学习过程,分享了使用TensorFlow进行MNIST手写数字识别的案例,包括环境搭建、模型构建、训练与评估。通过学习,掌握了神经网络的基本流程和TensorFlow的使用,最终实现了高准确率的识别模型。
摘要由CSDN通过智能技术生成

活动地址:CSDN21天学习挑战赛

学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您:
想系统/深入学习某技术知识点…
一个人摸索学习很难坚持,想组团高效学习…
想写博客但无从下手,急需写作干货注入能量…
热爱写作,愿意让自己成为更好的人…

创作计划

**
1,机缘

A,分享mnist手写数字识别案例
B,分享遇到的问题解决方式
C,通过文章进行技术交流

2,收获

A,获得了10粉丝的关注
B,获得了20如赞、阅读量
C,认识和了解了mnist手写数字识别的作者

3,日常

  1. 创作是否已经成为我学习的一部分了
  2. 有限的时间下,抽出星期二、四、六的时间进行创作,其余时间学习

4,憧憬

创作规划是熟悉TensorFlow的基本语法,测试方法,模型调优

**

学习计划

**
1,学习目标

掌握 TensorFlow运行机器学习模型的方法,了解数据集的构成和卷积神经网络的结构。

2,学习内容

A,搭建 TensorFlow 开发环境
B,掌握 TensorFlow基本语法
C,掌握机器学习模型的构成和数据集的结构

3,学习时间

周一至周五晚上 7 点—晚上9点
周六下午 7 点-下午 9 点
周日下午 7 点-下午 9 点

4,学习产出

技术笔记 10 遍
CSDN技术博客 5 篇
学习的vlog 视频 2个

**

学习日记

**
1,学习知识点

神经网络程序的流程

2,学习遇到的问题

数据归一化、损失函数和优化器的选择

3,学习的收获

学会了神经网络程序的基本流程

4,实操

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np


(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值