活动地址:CSDN21天学习挑战赛
学习的最大理由是想摆脱平庸,早一天就多一份人生的精彩;迟一天就多一天平庸的困扰。各位小伙伴,如果您:
想系统/深入学习某技术知识点…
一个人摸索学习很难坚持,想组团高效学习…
想写博客但无从下手,急需写作干货注入能量…
热爱写作,愿意让自己成为更好的人…
创作计划
**
1,机缘
A,分享mnist手写数字识别案例
B,分享遇到的问题解决方式
C,通过文章进行技术交流
2,收获
A,获得了10粉丝的关注
B,获得了20如赞、阅读量
C,认识和了解了mnist手写数字识别的作者
3,日常
- 创作是否已经成为我学习的一部分了
- 有限的时间下,抽出星期二、四、六的时间进行创作,其余时间学习
4,憧憬
创作规划是熟悉TensorFlow的基本语法,测试方法,模型调优
**
学习计划
**
1,学习目标
掌握 TensorFlow运行机器学习模型的方法,了解数据集的构成和卷积神经网络的结构。
2,学习内容
A,搭建 TensorFlow 开发环境
B,掌握 TensorFlow基本语法
C,掌握机器学习模型的构成和数据集的结构
3,学习时间
周一至周五晚上 7 点—晚上9点
周六下午 7 点-下午 9 点
周日下午 7 点-下午 9 点
4,学习产出
技术笔记 10 遍
CSDN技术博客 5 篇
学习的vlog 视频 2个
**
学习日记
**
1,学习知识点
神经网络程序的流程
2,学习遇到的问题
数据归一化、损失函数和优化器的选择
3,学习的收获
学会了神经网络程序的基本流程
4,实操
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt
import numpy as np
(train_images, train_labels), (test_images, test_labels) = datasets.mnist.load_data()
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0